茶叶科学 ›› 2016, Vol. 36 ›› Issue (1): 1-10.
• •
魏然, 徐平*, 应乐, 王岳飞
收稿日期:
2015-08-28
发布日期:
2019-08-23
通讯作者:
*,zdxp@zju.edu.cn
作者简介:
魏然,女,硕士研究生,主要从事茶天然产物与人体健康及其机理研究。
基金资助:
WEI Ran, XU Ping*, YING Le, WANG Yuefei
Received:
2015-08-28
Published:
2019-08-23
摘要: 阿尔茨海默病作为一种神经退行性疾病,因与认知功能相关的神经元异常而导致记忆衰退,甚至影响自主行动和吞咽。茶多酚能够有效防治阿尔茨海默病,其机制主要包括阻碍异常蛋白积累、抗氧化、影响神经递质水平、调节细胞信号转导通路及抗炎等。本文就近年来茶多酚对阿尔茨海默病的防治功能与机理方面的研究进行综述。
中图分类号:
魏然, 徐平, 应乐, 王岳飞. 茶多酚对阿尔茨海默病的防治功能与机理研究进展[J]. 茶叶科学, 2016, 36(1): 1-10.
WEI Ran, XU Ping, YING Le, WANG Yuefei. Progress in the Prevention of Tea Polyphenols on Alzheimer's Disease and Their Mechanisms[J]. Journal of Tea Science, 2016, 36(1): 1-10.
[1] Magdalena R Z, Milena S, Henryk K.Neurodegenerative diseases-Understanding their molecular bases and progress in the development of potential treatments[J]. Coordination Chemistry Reviews , 2015, 284(1): 298-312. [2] Anil K, Arti S, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update[J]. Pharmacological Reports, 2015, 67(2): 195-203. [3] Alzheimer’s Association.Alzheimer’s Association Report -2015 Alzheimer’s disease facts and figures[J]. Alzheimer’s & Dementia, 2015, 11(3): 332-384. [4] Maltsev A V, Bystryak S, Galzitskaya O V.The role of β-amyloid peptide in neurodegenerative diseases[J]. Ageing Research Reviews, 2011, 10(4): 440-452. [5] Parihar M S, Brewer G J.Mitoenergetic failure in Alzheimer disease[J]. American Journal of Physiology: Cell Physiology, 2007, 292(1): C8-C23. [6] Song J, Xu H, Liu F, et al.Tea and cognitive health in late life: current evidence and future directions[J]. Journal of Nutrition Health & Aging, 2012, 16(1): 31-34. [7] Shinichi K, Atsushi H, Kaori O, et al.Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project[J]. The American Journal of Clinical Nutrition, 2006, 83(2): 355-361. [8] Tze P N, Lei F, Mathew N, et al.Tea consumption and cognitive impairment and decline in older Chinese adults[J]. The American Journal of Clinical Nutrition, 2008, 88(1): 224-231. [9] Feng L, Gwee X, Kua E H, et al.Cognitive function and tea consumption in community dwelling older Chinese in Singapore[J]. Journal of Nutrition Health & Aging, 2010, 14(6): 433-438. [10] Nurk E, Refsum H, Drevon C A, et al.Intake of Flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance[J]. Journal of Nutrition, 2009, 139(1): 120-127. [11] Moeko N S, Sohshi Y, Chiaki D.Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline[J]. Plos One, 2014, 9(5): e96013. [12] Liu J C, Xian Q Y, Hong L J, et al.Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells[J]. Chemical Research in Toxicology, 2003, 16(9): 1155-1161. [13] Ji Y J, Chang R H, Yeon J J, et al.Epigallocatechin gallate inhibits nitric oxide-induced apoptosis in rat PC12 cells[J]. Neuroscience Letters, 2007, 411(3): 222-227. [14] Haider R, Annie J. [15] Yin C C, Kazuaki H, Chin J T, et al.Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice[J]. Journal of Nutritional Science and Vitaminology, 2006, 52(4): 266-273. [16] Tranum K, Pathak C M, Pandhi P, et al.Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats[J]. Brain and Cognition, 2008, 67(1): 25-30. [17] Li Q, Zhao H F, Zhang Z F, et al.Long-term green tea caechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus[J]. Neuroscience, 2009, 163(3): 741-749. [18] John H, David A.Amyloid deposition as the central event in the etiology of Alzheimer’s disease[J]. Trends in Pharmacological Sciences, 1991, 12(10): 383-388. [19] Charles R.Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets[J]. European Journal of Pharmacology, 2006, 545(1): 51-64. [20] Dominic M W, Dennis J S.Aβ Oligomers-a decade of discovery[J]. Journal of Neurochemistry, 2007, 101(5): 1172-1184. [21] Jayasena T, Poljak A, Smythe G, et al.The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease[J]. Ageing Research Reviews, 2013, 12(4): 867-883. [22] Kavon R Z, Doug S, Nan S, et al.Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice[J]. The Journal of Neuroscience, 2005, 25(38): 8807-8814. [23] Kavon R Z, Gary W A, Huayan H, et al.Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brain Research, 2008, 12(1214): 177-187. [24] Jae W L, Yong K L, Jung O B, et al.Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice[J]. The Journal of Nutrition, 2009, 139(10): 1987-1993. [25] Young K L, Dong Y Y, Jae W L, et al.(-)-Epigallocatechin-3-gallate prevents lipopolysaccharide- induced elevation of beta-amyloid generation and memory deficiency[J]. Brain Research, 2009, 1250: 164-174. [26] Okello E J, McDougall G J, Kumara S, et al. In vitro protective effects of colon-available extract of Camellia sinensis (tea) against hydrogen peroxide and beta-amyloid (Aβ(1-42)) induced cytotoxicity in differentiated PC12 cells[J]. Phytomedicine, 2011, 18(8/9): 691-696. [27] Fernando L P, Jiyong L, Neil P G, et al.Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils[J]. Journal of the American Chemical Society, 2013, 135(20): 7503-7510. [28] Juan M L, Uwe F, Muralidhar D, et al.Structural properties of EGCG-induced, nontoxic Alzheimer's disease Aβ oligomers[J]. Journal of Molecular Biology, 2012, 421(4/5): 517-524. [29] Dagmar E E, Jan B, Annett B, et al.EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers[J]. Nature Structural & Molecular Biology, 2008, 15(6): 558-566. [30] Hong Y L, Xiukui W, Qiong W, et al.Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats[J]. Nutrition, 2014, 30(3): 337-342. [31] Heike J W, Apurwa S, Marc I D, et al.The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios[J]. FEBS Letters, 2015, 589(1): 77-83. [32] Floyd R A, Hensley K.Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases[J]. Neurobiology of Aging, 2002, 23(5): 795-807. [33] Natasa D, Adam S, Xiao Y L, et al.Green tea epigallocatechin-3-Gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction[J]. Journal of Alzheimer’s Disease, 2011, 26(3): 507-521. [34] Keiko U, Fumiyo T, Takahiro K, et al.Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10)[J]. Experimental Gerontology, 2004, 39(7): 1027-1034. [35] Komatsu M, Hiramatsu M.The efficacy of an antioxidant cocktail on lipid peroxide level and superoxide dismutase activity in aged rat brain and DNA damage in iron-induced epileptogenic foci[J]. Toxicology, 2000, 148(2/3): 143-148. [36] Takahiro K, Keiko U, Hirotoshi Y, et al.Decline in glutathione peroxidase activity is a reason for brain senescence: consumption of green tea catechin prevents the decline in its activity and protein oxidative damage in ageing mouse brain[J]. Biogerontology, 2007, 8(4): 423-430. [37] Qiong L, Haifeng Z, Ming Z, et al.Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice[J]. Brain Research, 2010, 1353: 28-35. [38] Mee H K, Vaqar M A, Jeong S L, et al.Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate[J]. The Journal of Biological Chemistry, 2006, 281(44): 33761-33772. [39] Hirofumi I, Satoko A, Mari M Y.High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions[J]. Cell Stress Chaperones, 2011, 16(6): 653-662. [40] Levites Y, Amit T, Mandel S, et al.Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate[J]. The FASEB Journal, 2003, 17(8): 952-954. [41] 黄秀兰, 崔国辉, 周克元. PI3K-Akt信号通路与肿瘤细胞凋亡关系的研究进展[J]. 癌症, 2008, 27(3): 331-336. [42] Xiao Y Q, Yong C, Long C Y.Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats[J]. Neuroscience Letters, 2012, 513(2): 170-173. [43] Silvia M, Moussa B.Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases[J]. Free Radical Biology & Medicine, 2004, 37(3): 304-317. [44] 何苗, 魏敏杰. EGCG防治神经退行性疾病的作用机制[J]. 生命的化学, 2007, 27(5): 434-436. [45] Chi C, Rong Y, Edward D, et al.Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death[J]. Archives of Pharmacal Research, 2000, 23(6): 605-612. [46] Mei L L, Long C Y.Potential protection of green tea polyphenols against ultraviolet irradiation-induced injury on rat cortical neurons[J]. Neuroscience Letters, 2008, 444(3): 236-239. [47] Joo H C, Mujo K, Hye K K.Green tea polyphenols suppress nitric oxide-induced apoptosis and acetylcholinesterase activity in human neuroblastoma cells[J]. Nutrition Research, 2005, 25(5): 477-483. [48] Weinreb O, Mandel S, Youdim M B.Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin[J]. New York Academy of Sciences, 2003, 993(1): 351-361. [49] Weinreb O, Mandel S, Youdim M B. cDNA gene expression profile homology of antioxidants and their anti-apoptotic and pro-apoptotic activities in human neuroblastoma cells[J]. The FASEB Journal, 2003, 17(8): 935-937. [50] Mandel S, Maor G, Youdim M, et al.Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs Rapomorphine and green tea polyphenol(-)-epigallocatechin-3-gallate[J]. Journal of Molecular Neuroscience, 2004, 24(3): 401-416. [51] Sun Y L, Jae W L, Heesoon L, et al.Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms[J]. Molecular Brain Research, 2005, 140(1/2): 45-54. [52] 邓莉, 王今朝, 杨莉, 等. 胆碱转运体与阿尔茨海默病[J]. 生物化学与生物物理进展, 2014, 41(12): 1207-1213. [53] Kim H K, Kim M, Kim S, et al.Effects of green tea polyphenol on cognitive and acetylcholinesterase activities[J]. Bioscience Biotechnology and Biochemistry, 2004, 68(9): 1977-1979. [54] Regina B, Ana C T, Ana P C, et al.Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia[J]. Behavioural Brain Research, 2013, 236(1): 186-193. [55] Raghavendra H L, Prashith K T, Farhath K.Acetylcholinesterase inhibitory activity of green tea polyphenols[J]. Science, Technology and Arts Research Journal, 2014, 3(4): 141-142. [56] Keiko Y, Takeshi K, Huilian S, et al.Distinct mechanisms underlie distinct polyphenol-induced neuroprotection[J]. FEBS Letters , 2006, 580(28/29): 6623-6628. [57] Yan H, Jian K C, James C M, et al.Prolonged exposure of cortical neurons to oligomeric amyloid-b impairs NMDA receptor function via NADPH oxidasemediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate[J]. American Society for Neurochemistry, 2011, 3(1): 13-24. [58] 郝丽娜, 张庆柱, 于天贵. 非甾体类抗炎药抗阿尔采末病作用的研究进展[J]. 中国药理学通报, 2008, 24(8): 988-992. [59] Mattson M P, Culmsee C, Yu Z, et al.Roles of nuclear factor kappaB in neuronal survival and plasticity[J]. Journal of Neurochemistry, 2000, 74(2): 443-456. [60] Jing C, Da J, Ming S, et al.Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation[J]. Journal of Nutritional Biochemistry, 2014, 25(7): 716-725. [61] Young J L, Dong Y C, Yeo P Y, et al.Epigallocatechin- 3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties[J]. Journal of Nutritional Biochemistry, 2013, 24(1): 298-310. [62] Cawthon R M, Smith K R, O’Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older[J]. The Lancet, 2003, 361(9355): 393-395. [63] Panossian L A, Porter V R, Valenzuela H F, et al.Telomere shortening in T cells correlates with Alzheimer’s disease status[J]. Neurobiology of Aging, 2003, 24(1): 77-84. [64] Takubo K, Aida J, Izumiyama S N, et al.Changes of telomere length with aging[J]. Geriatrics & Gerontology International, 2010, 10(Sup. 1): S197-S206. [65] Mirabello L, Huang W Y, Wong J Y, et al.The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk ofprostate cancer[J]. Aging Cell, 2009, 8(4): 405-413. [66] Sheng R, Gu Z L, Xie M L.Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy[J]. International Journal of Cardiology, 2013, 162(3): 199-209. |
[1] | 魏然, 徐平, 应乐, 王岳飞. 茶多酚对阿尔茨海默病的防治功能与机理研究进展[J]. 茶叶科学, 2019, 36(1): 1-10. |
[2] | 张姝萍,王岳飞,徐平. 茶多酚对动脉粥样硬化的预防作用与机理研究进展[J]. 茶叶科学, 2019, 39(03): 231-246. |
[3] | 祝琳, 吴龙, 陈小强, 陈学玲, 吴正奇, 石勇. 茶多酚与多糖的相互作用:作用机理及功能特性变化研究进展[J]. 茶叶科学, 2019, 39(02): 203-210. |
[4] | 雷丽萍, 朱跃骅, 张剑, 杨文鸽, 李普友, 刘艳杰, 钱云霞. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531. |
[5] | 胡秀芳,张高亮,杨贤强. 茶多酚对肾病的作用及其机理[J]. 茶叶科学, 2002, 22(02): 98-104. |
[6] | 李立祥,萧伟祥. 茶多酚双液相氧化制取茶色素参数优化[J]. 茶叶科学, 2002, 22(02): 119-124. |
[7] | 龚淑英,周树红. 普洱茶贮藏过程中主要化学成分含量及感官品质变化的研究[J]. 茶叶科学, 2002, 22(01): 51-56. |
[8] | 李志光,谢文刚,张铭,李理. 茶多酚与细菌、DNA相互作用的研究[J]. 茶叶科学, 2002, 22(01): 62-65. |
[9] | 胡秀芳,杨贤强,陈留记,朱善瑾,洪宗元,宋建国,孙瑞元. 茶多酚对家兔肾病的药效研究[J]. 茶叶科学, 2000, 20(02): 148-154. |
[10] | 刘波静. 茶多酚对动物血清血脂和载脂蛋白水平的影响和抗氧化作用[J]. 茶叶科学, 2000, 20(01): 67-70. |
[11] | 林一萍,陈比特,陈玉春. 茶多酚对小鼠肝DNA甲基化酶活性的影响[J]. 茶叶科学, 2000, 20(01): 71-73. |
[12] | 胡秀芳,沈生荣,朴宰日,杨贤强. 茶多酚抗氧化机理研究现状[J]. 茶叶科学, 1999, 19(02): 93-103. |
[13] | 萧伟祥,宛晓春,胡耀武,钟瑾,萧慧. 茶儿茶素体外氧化产物分析[J]. 茶叶科学, 1999, 19(02): 145-149. |
[14] | 王岳飞,高永贵,周雅琴,杨贤强,徐春英. 茶与DNA相互作用及维生素C和咖啡因对它的影响[J]. 茶叶科学, 1999, 19(02): 150-154. |
[15] | 叶勇. 茶多酚自然色变影响因子及其控制[J]. 茶叶科学, 1999, 19(02): 155-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|