[1] |
Bartel D P.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
|
[2] |
谢小芳. 茶树miRNA靶基因的鉴定及在低温胁迫下的表达分析[D]. 合肥: 安徽农业大学, 2016.
|
[3] |
牟桂萍, 纪春艳, 许东林, 等. 植物miR164家族研究进展[J]. 生命科学, 2013, 25(5): 532-538.
|
[4] |
王浩然, 李爽爽, 乐丽娜, 等. miR164a及其靶基因PeNAC1相互作用研究[J]. 南京林业大学学报(自然科学版), 2016, 40(5): 29-33.
|
[5] |
Guo H S, Xie Q, Fei J F, et al.MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5): 1376-1386.
|
[6] |
Válóczi A, Várallyay É, Kauppinen S, et al.Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues[J]. Plant Journal, 2006, 47(1): 140-151.
|
[7] |
Lu S, Sun YH, Shi R, et al.Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. Plant Cell, 2005, 17(8): 2186-2203.
|
[8] |
孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
[9] |
彭辉, 于兴旺, 成慧颖, 等. 植物NAC转录因子家族研究概况[J]. 植物学报, 2010, 45(2): 236-248.
|
[10] |
孙利军, 李大勇, 张慧娟, 等. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用[J]. 遗传, 2012, 34(8): 993-1002.
|
[11] |
Olsen A N, Ernst H A, Leggio L L, et al.NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87.
|
[12] |
Nakashima K, Takasaki H, Mizoi J, et al.NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 97-103.
|
[13] |
Fang Y, Xie K, Xiong L.Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
|
[14] |
Puranik S, Sahu PP, Srivastava PS, et al.NAC proteins: regulation and role in stress tolerance[J]. Trends in plant science, 2012, 17(6): 369-381.
|
[15] |
Fujita M, Fujita Y, Maruyama K, et al.A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal, 2004, 39(6): 863-876.
|
[16] |
Yoo S Y, Kim Y, Kim S Y, et al.Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J]. Plos One, 2007, 2(7): e642. DOI: 10.1371/ journal.pone.0000642.
|
[17] |
Honghong Hu, Mingqiu Dai, Jialing Yao, et al.Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992.
|
[18] |
Laufs P, Peaucelle A, Morin H, et al.MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J]. Development, 2004, 131(17): 4311-4322.
|
[19] |
Kim J H, Woo H R, Kim J, et al.Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis[J]. Science, 2009, 323(5917): 1053-1057.
|
[20] |
Kaur A, Gupta O P, Meena N L, et al.Comparative temporal expression analysis of microRNAs and their target genes in contrasting wheat genotypes during osmotic stress[J]. Applied Biochemistry & Biotechnology, 2017, 181(2): 613-626.
|
[21] |
Lu X, Dun H, Lian C, et al.The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiology & Biochemistry Ppb, 2017, 115: 418-438.
|
[22] |
王永鑫, 刘志薇, 吴致君, 等. 茶树中2个NAC转录因子基因的克隆及温度胁迫的响应[J]. 西北植物学报, 2015, 35(11): 2148-2156.
|
[23] |
Zhang Y, Zhu X, Chen X, et al. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) andtheir targets using high-throughput sequencing and degradome analysis [J]. Bmc Plant Biology, 2014, 14(1): 271. https://doi.org/10.1186/s12870-014-0271-x.
|
[24] |
Zheng C, Zhao L, Wang Y, et al. Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis) [J]. Plos One, 2015, 10(4): e0125031. https://doi.org/10.1371/journal.pone.0125031.
|
[25] |
刘亚芹, 田坤红, 孙琪璐, 等. 茶树miR156a靶基因SPL6和SPL9的克隆及表达分析[J]. 茶叶科学, 2017, 37(6): 551-564.
|
[26] |
顾冕, 孟大千, 徐国华. 烟草microRNA827及其靶基因的鉴定与分析[J]. 南京农业大学学报, 2016, 39(6): 965-972.
|
[27] |
Fang Y, Xie K, Xiong L.Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
|
[28] |
Varkonyi-Gasic E, Hellens R P. qRT-PCR of small RNAs[J]. Methods in Molecular Biology, 2010, 631:109-122.
|
[29] |
谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604.
|
[30] |
Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time pcr analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12):22155-22172.
|
[31] |
Zhang B H, Pan X P, Cox S B, et al.Evidence that miRNAs are different from other RNAs[J]. Cellular & Molecular Life Sciences Cmls, 2006, 63(2): 246-254.
|
[32] |
Wang Y X, Liu Z W, Wu Z J, et al.Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze][J]. Plos One, 2016, 11(11): e0166727. DOI: 10.1371/journal.pone.0166727.
|
[33] |
吴骏, 张俊红, 黄蒙慧, 等. 光皮桦miR164及其靶基因NAC1在低氮胁迫中的表达分析[J]. 遗传, 2016, 38(2): 155-162.
|
[34] |
Guleria P, Yadav S K.Identification of miR414 and expression analysis of conserved miRNAs from stevia rebaudiana[J]. Genomics, Proteomics & Bioinformatics, 2011, 9(6): 211-217.
|
[35] |
王丽丽, 赵韩生, 孙化雨, 等. 胁迫条件下毛竹miR164b及其靶基因PeNAC1表达研究[J]. 林业科学研究, 2015, 28(5): 605-611.
|
[36] |
罗中钦. 大豆逆境胁迫相关microRNA的发掘与验证[D]. 北京: 中国农业科学院, 2012.
|
[37] |
孙润泽, 侯琦, 章文乐, 等. 甜杨低温响应microRNAs的克隆与分析[J]. 基因组学与应用生物学, 2011, 30(2): 204-211.
|
[38] |
Gupta O P, Meena N L, Sharma I, et al.Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat[J]. Molecular Biology Reports, 2014, 41(7): 4623-4629.
|