茶叶科学 ›› 2018, Vol. 38 ›› Issue (6): 606-614.doi: 10.13305/j.cnki.jts.2018.06.007
庞丹丹, 张芬, 张亚真, 韦康*, 王丽鸳, 成浩
收稿日期:
2018-03-19
修回日期:
2018-05-07
出版日期:
2018-12-15
发布日期:
2019-12-15
通讯作者:
*weikang@tricaas.com
作者简介:
庞丹丹,女,硕士研究生,主要从事茶树分子生物学研究。
基金资助:
PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang*, WANG Liyuan, CHENG Hao
Received:
2018-03-19
Revised:
2018-05-07
Online:
2018-12-15
Published:
2019-12-15
摘要: 花青素是一类重要的多酚类物质,也是一种天然的抗氧化剂,具有调节血脂、抗癌、降压等作用。紫芽茶叶中花青素含量较丰富,因此相关特异品种逐渐受到消费者的青睐。本文基于国内外学者对花青素的研究现状,主要综述了茶树花青素的种类、生物合成、生理功能以及影响茶树花青素生物合成的其他内外因素等,以期为茶树花青素的开发利用提供理论依据。
中图分类号:
庞丹丹, 张芬, 张亚真, 韦康, 王丽鸳, 成浩. 茶叶花青素合成、调控及功能的研究进展[J]. 茶叶科学, 2018, 38(6): 606-614. doi: 10.13305/j.cnki.jts.2018.06.007.
PANG Dandan, ZHANG Fen, ZHANG Yazhen, WEI Kang, WANG Liyuan, CHENG Hao. Research Advance on Biosynthesis, Regulation and Function of Anthocyanins in Tea Plant[J]. Journal of Tea Science, 2018, 38(6): 606-614. doi: 10.13305/j.cnki.jts.2018.06.007.
[1] | Rashid K, Wachira F N, Nyabuga J N, et al.Kenyan purple tea anthocyanins ability to cross the blood brain barrier and reinforce brain antioxidant capacity in mice[J]. Nutritional Neuroscience, 2014, 17(4): 178-185. |
[2] | Yang L, Ling W, Du Z, et al.Effects of Anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials[J]. Advances in Nutrition, 2017, 8(5): 684-693. |
[3] | Hsu C P, Shih Y T, Lin B R, et al.Inhibitory effect and mechanisms of an anthocyanins-and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation[J]. J Agric Food Chem, 2012, 60(14): 3686-3692. |
[4] | David V, Ana R M, Giulia C, et al.Polyphenols and human health: prevention of disease and mechanisms of action[J]. Nutrients, 2010, 2(11): 1106-1131. |
[5] | 潘亚燕, 吴华玲, 李家贤, 等. 红紫芽茶利用研究进展[J]. 广东农业科学, 2015, 42(1): 8-12. |
[6] | 梅菊芬, 徐德良, 汤茶琴, 等. 茶树花青素及其种质资源的研究和利用进展[J]. 热带农业工程, 2013, 37(1): 42-46. |
[7] | Martin C, Gerats T.Control of pigment biosynthesis genes during petal development[J]. Plant Cell, 1993, 5(10): 1253-1264. |
[8] | Ogata J, Kanno Y, Itoh Y, et al.Plant biochemidtry: anthocyain biosynthesis in roses[J]. Nature, 2005, 435(7043): 757-758. |
[9] | Jiang L, Shen X, Shoji T, et al.Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(13): 3306-3310. |
[10] | Lai Y S, Li S, Tang Q, et al.The dark-purple tea cultivar 'Ziyan' accumulates a large amount of delphinidin-related anthocyanins[J]. J Agric Food Chem, 2016, 64(13): 2719-2726. |
[11] | Wang L, Pan D, Liang M, et al. Regulation of anthocyanin biosynthesis in purple leaves of Zijuan tea (Camellia sinensis var. kitamura) [J]. International Journal of Molecular Sciences, 2017, 18(4): 833. https://doi.org/10.3390/ijms18040833. |
[12] | 谷记平, 赵淑娟. 功能型(特种茶)茶产品的开发和研究现状[J]. 中国茶叶, 2014, 36(11): 10-13. |
[13] | 王秋霜, 凌彩金, 刘淑媚, 等. 红紫芽茶叶花青素提取分离及pH稳定性初探[J]. 中国农学通报, 2014, 30(9): 291-296. |
[14] | Jez J M, Bowman M E, Dixon R A, et al.Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase[J]. Nature Structural Biology, 2000, 7(9): 786-791. |
[15] | Gensheimer M, Mushegian A.Chalcone isomerase family and fold: no longer unique to plants[J]. Protein Science, 2004, 13(2): 540-544. |
[16] | Punyasiri P A, Abeysinghe I S, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30. |
[17] | Onyilagha J C, Grotewold E, Pandalai S G.The biology and structural distribution of surface flavonoids[J]. Recent Research Developments in Plant Science, 2004, 136(2): 53-71. |
[18] | Harborne J B.The flavonoids: recent advances [M]//Goodwin T W. Plant Pigments. London: Academic Press, 1988: 299-343. |
[19] | Nakayama T, Suzuki H, Nishino T.Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications[J]. Journal of Molecular Catalysis B Enzymatic, 2003, 23(2): 117-132. |
[20] | Springob K, Nakajima J, Yamazaki M, et al.Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports, 2003, 20(3): 288-303. |
[21] | Winkel-Shirley B.Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways[J]. Physiologia Plantarum, 1999, 107(1): 142-149. |
[22] | Alfenito MR, Souer E, Goodman CD, et al.Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases[J]. The Plant cell, 1998, 10(7): 1135-1149. |
[23] | Larsen ES, Alfenito MR, Briggs WR, et al.A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9[J]. Plant Cell Reports, 2003, 21(9): 900-904. |
[24] | 张亚真, 张芬, 王丽鸳, 等. 植物谷胱甘肽转移酶在类黄酮累积中的作用[J]. 植物生理学报, 2015, 51(11): 1815-1820. |
[25] | Zhao J, Dixon RA.The ‘ins’ and ‘outs’ of flavonoid transport[J]. Trends in Plant Science, 2009, 15(2): 72-80. |
[26] | Kitamura S, Shikazono N, Tanaka A.TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis[J]. Plant Journal for Cell and Molecular Biology, 2004, 37(1): 104-114. |
[27] | Loïc Lepiniec, Isabelle Debeaujon, JeanMarc Routaboul, et al. Genetics and biochemistry of seed flavonoids[J]. Annual review of plant biology, 2006, 57(1): 405-430. |
[28] | Mueller LA, Goodman CD, Silady RA, et al.AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein[J]. Plant physiology, 2000, 123(4): 1561-1570. |
[29] | 张亚真, 韦康, 王丽鸳,等. 基于转录组测序对茶树GST基因表达的研究[J]. 茶叶科学, 2016, 36(5): 513-522. |
[30] | Wei K, Zhang Y, Wu L, et al.Gene expression analysis of bud and leaf color in tea[J]. Plant Physiology and Biochemistry, 2016, 107: 310-318. |
[31] | Weiss D.Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals[J]. Physiologia Plantarum, 2010, 110(2): 152-157. |
[32] | Mano H, Ogasawara F, Sato K, et al.Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato[J]. Plant Physiology, 2007, 143(3): 1252-1268. |
[33] | Gonzalez A, Zhao M, Leavitt J M, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant Journal, 2008, 53(5): 814-827. |
[34] | Koes R, Verweij W, Quattrocchio F.Flavonoids: a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science, 2005, 10(5): 236-242. |
[35] | S A Goff, K C Cone, V L Chandler.Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins[J]. Genes & development, 1992, 6(5): 864-875. |
[36] | Hernandez J, Heine G, Irani NG, et al.Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1[J]. Journal of Biological Chemistry. 2004, 279: 48205-48213. |
[37] | Jiang X, Huang K, Zheng G, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Science, 2018, 270: 209-220. |
[38] | He X, Zhao X, Gao L, et al. Isolation and characterization of key genes that promote flavonoid accumulation in purple-leaf tea (Camellia sinensis L.) [J]. Scientific Reports, 2018, 8(1): 130. www.nature.com/articles/s41598-017-18133-z. |
[39] | El-Sharkawy Islam, Liang Dong, Xu Kenong.Transcriptome analysis of an apple (Malus×domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation[J]. Journal of experimental botany, 2015, 66(22): 7359-7376. |
[40] | Singh R, Low E T, Ooi L C, et al.The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB[J]. Nature Communications, 2014, 5: 4106. doi: 10.1038/ncomms5106. |
[41] | Wang Z, Meng D, Wang A, et al.The methylation of the PcMYB10 promoter is associated with green-skinned sport in max red bartlett pear[J]. Plant Physiology, 2013, 162(2): 885-896. |
[42] | Sun B, Zhu Z, Cao P, et al. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1 [J]. Scientific Reports, 2016, 6: 32534. www.nature.com/articles/srep32534. |
[43] | Li M, Li Y, Guo L, et al.Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach[J]. Frontiers in Plant Science, 2017, 8: 943. doi: 10.3389/fpls.2017.00943. |
[44] | E Grotewold.The genetics and biochemistry of floral pigments[J]. Annual review of plant biology, 2006, 57(1): 761-780. |
[45] | 马春雷, 姚明哲, 王新超, 等. 利用基因芯片筛选茶树芽叶紫化相关基因[J]. 茶叶科学, 2011, 31(1): 59-65. |
[46] | 赵磊. 茶树类黄酮合成转录因子筛选及ANR基因功能验证[D]. 合肥: 安徽农业大学, 2013. |
[47] | Borevitz J O, Xia Y, Blount J, et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. Plant Cell, 2000, 12(12): 2383-2393. |
[48] | Jin-Seog Kim, Byung-Hoi Lee, So-Hee Kim, et al.Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn ( Zea mays, L.) leaf[J]. Journal of Plant Biology, 2006, 49(1): 16-25. |
[49] | Mol J, Jenkins G, SchãFer E, et al. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis[J]. Critical Reviews in Plant Sciences, 1996, 15(5/6): 525-557. |
[50] | 李智. 不同环境因子调控茶树紫色芽叶形成的分子机制研究[D]. 泰安: 山东农业大学, 2014. |
[51] | 孙彬妹. 茶树MYB转录因子CsAN1调控花青素的作用机制研究[D]. 广州: 华南农业大学, 2016. |
[52] | Dong Y H, Beuning L, Davies K, et al.Expression of pigmentation genes and photo-regulation of anthocyanin biosynthesis in developing Royal Gala apple flowers[J]. Functional Plant Biology, 1998, 25(2): 245-252. |
[53] | Chatterjee M, Sharma P, Khurana J P.Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation[J]. Plant Physiology, 2006, 141(1): 61-74. |
[54] | 张泽岑, 王能彬. 光质对茶树花青素含量的影响[J]. 四川农业大学学报, 2002, 20(4): 337-339. |
[55] | Christie P J, Alfenito M R, Walbot V.Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings[J]. Planta, 1994, 194(4): 541-549. |
[56] | Antonio Leyva, Julio Salinas, José Miguel Martinez-Zapater. Low temperature induces the accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a light-dependent manner[J]. Plant physiology, 1995, 108(1): 39-46. |
[57] | Shaked-Sachray L, Weiss D, Reuveni M, et al.Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment[J]. Physiologia Plantarum, 2002, 114(4): 559-565. |
[58] | Solfanelli C, Poggi A, Loreti E, et al.Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiology, 2006, 140(2): 637-646. |
[59] | Weiss D, Halevy A H.Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hybrid[J]. Planta, 1989, 179(1): 89-96. |
[60] | Feyissa D N, Løvdal T, Olsen K M, et al.The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves[J]. Planta, 2009, 230(4): 747-754. |
[61] | Fritz C, Palacios-Rojas N, Feil R, et al.Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism[J]. Plant Journal for Cell & Molecular Biology, 2006, 46(4): 533-548. |
[62] | Lovdal T, Olsen K M, Slimestad R, et al.Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato[J]. Phytochemistry, 2010, 71(5/6): 605-613. |
[63] | Wolf-Rüdiger Scheible, Mark Stitt.Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiology, 2004, 136(1): 2483-2499. |
[64] | Li-Li Zhou, Ming-Zhu Shi, De-Yu Xie.Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana[J]. Planta, 2012, 236(3): 825-837. |
[65] | Larbat R, Olsen K M, Slimestad R, et al.Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato[J]. Phytochemistry, 2012, 77(1):119-128. |
[66] | 刘健伟. 基于组学技术研究氮素对于茶树碳氮代谢及主要品质成分生物合成的影响[D]. 北京: 中国农业科学院, 2016. |
[67] | Neill S O, Gould K S.Anthocyanins in leaves: light attenuators or antioxidants?[J]. Functional Plant Biology, 2003, 30(8): 865-873. |
[68] | Tattini M, Landi M, Brunetti C, et al.Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation[J]. Physiologia Plantarum, 2014, 152(3): 585-598. |
[69] | Burger J, Edwards G E.Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties[J]. Plant & Cell Physiology, 1996, 37(3): 395-399. |
[70] | 张开明. 四季秋海棠(Begonia semperflorens)叶片中花色素苷的光保护作用和低温诱导机理[D]. 杭州: 浙江大学, 2010. |
[71] | 王良再, 胡彦波, 张会慧, 等. 植物叶片花青素的光破坏防御机制研究进展[J]. 应用生态学报, 2012, 23(3): 835-841. |
[72] | Trevor A.Thorpe. Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoides var. occidentals) in relation to anthocyanin accumulation[J]. In Vitro Cellular & Developmental Biology-Plant, 1994, 30(3): 164-170. |
[73] | 费旭元. 紫娟茶中花青素的提取分离及抗氧化活性研究[D]. 北京: 中国农业科学院, 2012. |
[74] | 林志城, 林伯儒, 徐治平, 等. 紫芽茶在抗肠癌保健活性与抑制机制[C]. 海峡两岸茶业学术研讨会. 2010. |
[75] | Liang W, Lee A H, Binns C W, et al.Tea consumption and ischemic stroke risk: a case-control study in southern China[J]. Stroke, 2009, 40(7): 2480-2485. |
[76] | 梁名志, 夏涛. 特种紫茶降压活性物质初探[J]. 云南农业大学学报, 2003, 18(4): 378-381. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[3] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[4] | 王峰, 陈玉真, 吴志丹, 尤志明, 余文权, 俞晓敏, 杨贞标. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. |
[5] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[6] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[7] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[8] | 汪为通, 周孝贵, 张欣欣, 王志博, 张大羽, 肖强. 条纹蝇虎对灰茶尺蠖幼虫的捕食作用[J]. 茶叶科学, 2022, 42(4): 515-524. |
[9] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[10] | 王涛, 王艺清, 漆思雨, 周喆, 陈志丹, 孙威江. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. |
[11] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[12] | 欧阳珂, 张成, 廖雪利, 坤吉瑞, 童华荣. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. |
[13] | 史凡, 黄泓晶, 陈燕婷, 陈李林. 间套作功能植物对茶园生态系统服务功能的影响[J]. 茶叶科学, 2022, 42(2): 151-168. |
[14] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[15] | 杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|