茶叶科学 ›› 2014, Vol. 34 ›› Issue (6): 531-540.doi: 10.13305/j.cnki.jts.2014.06.013
• • 下一篇
晏嫦妤1,2, 任秋婧1, 陈小芳1, 李斌1,*, 陈忠正1,*
收稿日期:
2014-06-19
修回日期:
2014-08-18
出版日期:
2014-12-20
发布日期:
2019-09-03
通讯作者:
*
作者简介:
晏嫦妤(1981— ),女,湖南浏阳人,博士研究生,助理研究员,从事茶树遗传育种与分子生物学研究。
基金资助:
YAN Changyu1,2, REN Qiujing1, CHEN Xiaofang1, LI Bin1,*, CHEN Zhongzheng1,*
Received:
2014-06-19
Revised:
2014-08-18
Online:
2014-12-20
Published:
2019-09-03
摘要: 咖啡碱是茶叶、咖啡等饮料的主要品质成分及功能成分之一。在植物体内咖啡碱生物合成的核心途径为:黄嘌呤核苷→7-甲基黄嘌呤核苷→7-甲基黄嘌呤→可可碱→咖啡碱,其中包括3步由N-甲基转移酶催化的转甲基化反应和1步由核糖核苷水解酶催化的脱核苷反应。N-甲基转移酶是参与咖啡碱生物合成的关键酶类。介绍了植物中咖啡碱的基本情况及其生物合成途径,重点综述了咖啡碱合成N-甲基转移酶的酶学特性、NMTs的克隆、基因结构与功能的关系以及基因表达调控研究等方面国内外的研究进展,并对未来该领域的研究重点进行了探讨和展望。
中图分类号:
晏嫦妤, 任秋婧, 陈小芳, 李斌, 陈忠正. 咖啡碱合成N-甲基转移酶研究进展[J]. 茶叶科学, 2014, 34(6): 531-540. doi: 10.13305/j.cnki.jts.2014.06.013.
YAN Changyu, REN Qiujing, CHEN Xiaofang, LI Bin, CHEN Zhongzheng. Research Progress of N- methyltransferases Involved in Caffeine Biosynthesis[J]. Journal of Tea Science, 2014, 34(6): 531-540. doi: 10.13305/j.cnki.jts.2014.06.013.
[1] | Ashihara H, Sano H, Crozier A.Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69: 841-856. |
[2] | Negishi O, Ozawa T, Imagawa H.Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis[J]. Agric Biol Chem, 1985, 49(3): 887-890. |
[3] | Ashihara H.Purine metabolism and the biosynthesis of caffeine in mate leaves[J]. Phytochemistry, 1993, 33(6): 1427-1430. |
[4] | Koyama Y, Tomoda Y, Kato M, et al. Metabolism of purine bases, nucleosides and alkaloids in theobromine-forming theobroma cacao leaves[J]. Plant Physiol Biochem, 2003, 41: 977-984. |
[5] | Yoneyama N, Morimoto H, Ye CX, et al. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J]. Mol Gen Genom, 2006, 275: 125-135. |
[6] | Kato M, Kanehara T, Shimizu H.Caffeine biosynthesis in young leaves of Camellia sinesis: in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine[J]. Plant Physiol, 1996, 3(98): 629-636. |
[7] | 耿敬章, 徐福星. 生物碱生理功能及其提取分离研究进展[J]. 粮食与油脂, 2007(4): 44-46. |
[8] | 周晨阳, 金基强, 姚明哲, 等. 茶树等植物中嘌呤生物碱代谢研究进展[J]. 茶叶科学, 2011, 1(2): 87-94. |
[9] | 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242. |
[10] | Nawrot P, Jordan S, Eastwood J, et al. Effects of caffeine on human health[J]. Food Addit Contam, 2003, 20(1): 1-30. |
[11] | Hollingsworth R G, Armstrong J W, Campbell E.Caffeine as a repellent for slugs and snail: at high concentrations this stimulant becomes a lethal neurotoxin to garden pests[J]. Nature, 2002, 417: 915-916. |
[12] | Almeida A A P, Farah A, Silva D A M. Antibacterial activity of coffee extracts and selected coffee chemical compounds against Enterobacteria[J]. Agric Food Chem, 2006, 54(23): 8738-8743. |
[13] | 张华艳, 戚丽, 张正竹, 等. 咖啡碱对茶树主要叶部病原真菌的抑制作用[J].南京农业大学学报, 2010, 33(2): 63-67. |
[14] | Kato M, Mizuno K, Fujimura T, et al. Purification and characterization of caffeine synthase from tea leaves[J]. Plant Physiol, 1999, 120: 586-597. |
[15] | Schulthess B H, Morath P, Baumann T W.Caffeine biosynthesis starts with the metabolically channeled formation of 7-methyl-XMP—A new hypothesis[J]. Phytochemistry, 1996, 41(1): 169-175. |
[16] | Suzuki T, Ashihara H, Waller G R.Purine and purine alkaloid metabolism in Camellia and Coffee plants[J]. Phytochemistry, 1992, 31: 2575-2584. |
[17] | Negishi O, Ozawa T, Imagawa H.Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis[J]. Agric Biol Chem, 1985, 49(3): 887-890. |
[18] | Waldhauser SSM, Gillies FM, Crozier A, et al. Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis[J]. Phytochemistry, 1997, 45(7): 1407-1414. |
[19] | Mazzafera P, Wingsle G, Olsson O, et al. S-adenosyl-lmethionine:theobromine 1-N-methyltransferase, an enzyme catalyzing the synthesis of caffeine in coffee[J]. Phytochemistry, 1994, 37: 1577-1584. |
[20] | Gillies F M, Jenkins G I, Ashihara H, et al. In vitro biosynthesis of caffeine: stability of N-methyltransferase activity in cell-free preparations from liquid endosperm of Coffea Arabica[C]. Association Scientifique Internationale du CaféIn. Proceedings of the 16th International Symposium on Coffee Science, Kyoto. 1995: 599-605. |
[21] | Simone S, Mosli Waldhauser, Fiona M, et al. Separationing of the N-7-methyltransferase, the key enzyme in caffeine biosynthesis[J]. Phytochemistry, 1997, 45(7): 1407-1414. |
[22] | Ogawa M, Herai Y, Koizumi N, et al. 7-Methylxanthine methyltransferase of coffee plants[J]. Bio Chem, 2001, 276: 8213-8218. |
[23] | Uefuji H, Ogita S, Yamaguchi Y, et al. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants[J]. Plant Physiol, 2003, 132(1): 372-380. |
[24] | Suzuki T, Takahashi E.Biosynthesis of caffeine by tea leaves enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine[J]. Biochemistry, 1975, 1(46): 79-85. |
[25] | Kato M, Mizuno K, Crozier A, et al. A gene encoding caffeine synthase from tea leaves[J]. Nature, 2000, 406: 956-957. |
[26] | Ashihara H, Kato M, Ye C X.Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla)[J]. Plant Research, 1998, 111: 599-604. |
[27] | Moisyadi S, Neupane K R, Stiles J I.Cloning and characterization of a cDNA encoding xanthosine-N-7- methyltransferase from coffee (Coffea arabica L.)[J]. Acta Hortic, 1998, 461: 367-378. |
[28] | Camellia sinensis TCSz Mrna for caffeine synthase, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/AB031281. |
[29] | Camellia sinensis caffeine synthase mRNA, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/ nuccore/AY907710. |
[30] | Camellia sinensis caffeine synthase gene, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/No. EF526217. |
[31] | 金基强, 姚明哲, 马春雷, 等. 合成茶树咖啡碱相关的N-甲基转移酶基因家族的克隆及序列分析[J]. 茶叶科学, 2014, 3(2): 188-194. |
[32] | Ishida M, Kitao N, Mizuno K, et al. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants[J]. Planta, 2009(3): 559-568. |
[33] | Mizuno K, Kato M, Irino F, et al. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthase coffee (Coffea arabica L.)[J]. FEBS Lett, 2003a, 547: 56-60. |
[34] | Mizuno K, Okuda A, Kato M, et al. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthineto caffeine from coffee (Coffea arabica L.)[J]. FEBS Lett, 2003b, 534: 75-81. |
[35] | Camellia sinensis caffeine synthase gene, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/AY273813. |
[36] | Caffeine synthase and its use[DB]. Caffeine synthase and its use[DB]. http://www. ncbi.nlm.nih.gov/ nuccore/DJ428086 |
[37] | Andrew A. Mc Carthy, Laurent Biget, Chenwei Lin, et al. Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta)[J]. Acta Cryst, 2007, F63: 304-307. |
[38] | Figueirêdo L C, Faria-Campos A C, Astolfi-Filho S, et al. Identification and isolation of full-length cDNA sequences by sequencing and analysis of expressed sequence tags from guarana(Paullinia cupana)[J]. Genet Mol Res, 2011, 10(2): 1188-1199. |
[39] | 余有本, 江昌俊, 王朝霞, 等. 茶树咖啡碱合酶cDNA在大肠杆菌中的表达[J]. 南京农业大学学报, 2004, 27(4): 105-109. |
[40] | 周英. 茶叶N-甲基转移酶、SAM合成酶基因克隆的研究[D]. 广州: 华南农业大学, 2004: 51. |
[41] | 陈丽萍, 陈忠正, 李斌, 等. 南昆山毛叶茶等茶树资源N-甲基转移酶基因的克隆与序列分析[J]. 食品科学, 2006, 27(7): 99-103. |
[42] | 文海涛. 南昆山毛叶茶天然低咖啡碱代谢分子机理研究[D]. 广州: 华南农业大学, 2008: 64. |
[43] | 许煜华. 茶叶咖啡碱合成N-甲基转移酶基因克隆和功能鉴定[D]. 广州: 华南农业大学, 2011: 50. |
[44] | Andrew A. Mc Carthy, James G. Mc Carthy.The structure of two N-methyltransferases from the caffeine biosynthetic pathway[J]. Plant Physiol, 2007, 144(2): 879-889. |
[45] | Kouichi Mizuno, Shin-ichi Kurosawa, Yuko Yoshizawa, et al. Essential region for 3-N methylation in N-methyltransferases involved in caffeine biosynthesis[J]. ZNATURFORSCH C, 2010, 65(3/4): 257-265. |
[46] | 金璐. 茶树咖啡碱合成途径研究及其分子调控[D]. 合肥: 安徽农业大学, 2012: 44-47. |
[47] | 焦义. 茶叶咖啡碱合成N-甲基转移酶克隆及结构与功能研究[D]. 广州: 华南农业大学, 2013: 55-56. |
[48] | Kato A, Crozier A, Ashihara A.Subcellular localization of the N-methyltransferase involved in caffeine biosynthesis tea[J]. Phytochemistry, 1998, 48(5): 777-779. |
[49] | 李远华, 江昌俊, 宛晓春. 茶树咖啡碱合成酶基因mRNA表达的研究[J]. 茶叶科学, 2004, 24(1): 23-28. |
[50] | 章爱军. 茶树染色体核型分析及TCS基因在染色体上初步定位[D]. 合肥: 安徽农业大学, 2005: 31. |
[51] | Breda S V, Merwe C F, Robbertse H.Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves[J]. Planta, 2013, 237: 849-858. |
[52] | Maluf M P, Silva C C, Oliveira M, et al. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea Arabica[J]. Genet Mol Biol, 2009, 32(4): 802-810. |
[53] | Mohanpuria P, Kumar V, Yadav SK.Tea caffeine: metabolism, function and reduction strategies[J]. Food Sci Biotechnol, 2010, 19(2): 275-287. |
[54] | 夏力飞, 陈林波, 梁名志, 等. 特异茶树资源生物碱测定及相关基因表达分析[J]. 西南农业大学学报, 2013, 26(3): 947-949. |
[55] | 李金, 魏艳丽, 庞磊, 等. 茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J]. 江苏农业科学, 2013, 41(10): 21-23. |
[56] | Koshiishi C, Ito E, Kato A, et al. Purine alkaloid biosynthesis in young leaves of Camellia sinensis in light and darkness[J]. Plant Research, 2000, 113: 217-221. |
[57] | Aneja M, Gianfagna T.Induction and accumulation of caffeine in young, actively growing leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis perniciosa[J]. Physiol Mol Plant Pathol, 2001, 59: 13-16. |
[58] | Bailey B A, Bae H, Strem M D, et al. Development alexpression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthoramegakarya[J]. Plant Physiol Biochem, 2005, 43: 611-622. |
[59] | Misako Kato, Naoko kitao, Mariko Ishida, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Z Naturforshi, 65c, 2010: 245-256. |
[60] | Ogita S, Uefuji H, Morimoto M, et al. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties[J]. Plant Mol Biol, 2004, 54: 931-941. |
[61] | Mohanpuria P, Kumar V, Ahuja P S, et al. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase gene[J]. Plant Mol Biotechnol, 2011a, 76: 523-534. |
[62] | Mohanpuria P, Kumar V, Ahuja P S, et al. Agrobacterium-mediated silencing of caffeine synthesis though root transformation in Camellia sinensis[J]. Plant Mol Biotechnol, 2011b, 48: 235-243. |
[1] | 陈德权, 朱艳, 邹纯, 尹军峰, 陈建新, 许勇泉. 茶啤酒的研究进展[J]. 茶叶科学, 2022, 42(2): 169-178. |
[2] | 石亚丽, 朱荫, 马婉君, 杨高中, 王梦琪, 施江, 彭群华, 林智, 吕海鹏. 名优炒青绿茶挥发性成分研究进展[J]. 茶叶科学, 2021, 41(3): 285-301. |
[3] | 卢莉, 程曦, 张渤, 沈小霞, 刘艳, 熊丽, 袁潇, 李远华, 黎星辉. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. |
[4] | 高晨曦, 黄艳, 孙威江. 茶叶中原花青素研究进展[J]. 茶叶科学, 2020, 40(4): 441-453. |
[5] | 马婉君, 马士成, 刘春梅, 龙志荣, 唐保军, 林智, 吕海鹏. 六堡茶的化学成分及生物活性研究进展[J]. 茶叶科学, 2020, 40(3): 289-304. |
[6] | 郑城钦, 马存强, 张正艳, 李肖宏, 吴婷婷, 周斌星. 茶叶微生物固态发酵中咖啡碱降解途径初探[J]. 茶叶科学, 2020, 40(3): 386-396. |
[7] | 李喜旺, 刘丰静, 邵胜荣, 苏亮, 金李孟, 娄永根, 孙晓玲. 茶尺蠖绿色防控技术研究现状及展望[J]. 茶叶科学, 2017, 37(4): 325-331. |
[8] | 马存强, 周斌星, 王洪振, 王潘. 普洱茶渥堆发酵中可降解咖啡碱真菌菌株的筛选和鉴定[J]. 茶叶科学, 2017, 37(2): 211-219. |
[9] | 唐雨薇, 刘丽萍, 王若娴, 陈宇宏, 刘仲华, 刘硕谦. 茶树咖啡碱合成酶CRISPR/Cas9基因组编辑载体的构建[J]. 茶叶科学, 2016, 36(4): 414-426. |
[10] | 黄丹娟, 马建强, 陈亮. 茶树DNA分子指纹图谱研究进展[J]. 茶叶科学, 2015, 35(6): 513-519. |
[11] | 马建强, 姚明哲, 陈亮. 茶树种质资源研究进展[J]. 茶叶科学, 2015, 35(1): 11-16. |
[12] | 宋爽, 黄业伟, 王宣军, 于海双, 方崇业, 盛军, 郝淑美. 低pH沉淀法检测茶叶中的结合咖啡碱[J]. 茶叶科学, 2013, 33(4): 322-326. |
[13] | 李俊, 郭晓关, 庞宏宇, 朱福建, 王震, 赖飞. 贵州绿茶中咖啡碱和儿茶素含量分析[J]. 茶叶科学, 2012, 32(6): 480-484. |
[14] | 王雪敏, 姚明哲, 金基强, 马春雷, 陈亮. 低咖啡碱茶树遗传群体的咖啡碱含量与分子变异分析[J]. 茶叶科学, 2012, 32(3): 276-282. |
[15] | 周晨阳, 金基强, 姚明哲, 陈亮. 茶树等植物中嘌呤生物碱代谢研究进展[J]. 茶叶科学, 2011, 31(2): 87-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|