茶叶科学 ›› 2013, Vol. 33 ›› Issue (3): 212-220.doi: 10.13305/j.cnki.jts.2013.03.007
朱全武, 范凯, 谢艳兰, 董迹芬, 詹宇雯, 骆耀平*
收稿日期:
2012-11-02
修回日期:
2012-12-18
出版日期:
2013-06-30
发布日期:
2019-09-04
通讯作者:
*ypluo@zju.edu.cn
作者简介:
朱全武(1989— ),男,河南信阳人,硕士研究生,主要从事茶树生物技术与资源利用研究。
基金资助:
ZHU Quan-wu, FAN Kai, XIE Yan-lan, DONG Ji-fen, Zhan Yu-wen, LUO Yao-ping*
Received:
2012-11-02
Revised:
2012-12-18
Online:
2013-06-30
Published:
2019-09-04
摘要: miRNAs(microRNAs)通过互补配对的方式指导mRNA剪切或者抑制翻译负调控基因的表达。在植物中miRNAs不仅参与调控生长发育,还在低温等多种逆境胁迫下发挥着重要作用。文章介绍了植物miRNAs的形成、作用机制及功能,分析其在低温胁迫基因调控网络中的作用及在茶树中的相关研究,旨在系统深入了解低温响应miRNAs在抗寒机制中的作用,为深入开展茶树抗寒性研究提供新思路。
中图分类号:
朱全武, 范凯, 谢艳兰, 董迹芬, 詹宇雯, 骆耀平. 植物低温胁迫响应miRNAs及其在茶树抗寒研究中的应用[J]. 茶叶科学, 2013, 33(3): 212-220. doi: 10.13305/j.cnki.jts.2013.03.007.
ZHU Quan-wu, FAN Kai, XIE Yan-lan, DONG Ji-fen, Zhan Yu-wen, LUO Yao-ping. Progress in Plant Cold-stress-responsive miRNAs and the Application in Cold Resistance Research of Camellia sinensis[J]. Journal of Tea Science, 2013, 33(3): 212-220. doi: 10.13305/j.cnki.jts.2013.03.007.
[1] | Bartel D P.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. |
[2] | Carrington J C, Ambros V.Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631): 336-338. |
[3] | Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57: 19-53. |
[4] | He L, Hannon G J.MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522-531. |
[5] | Rosalind C Lee, Rhonda L Feinbaum, Victor Anbros.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75: 843-854. |
[6] | Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. |
[7] | Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Research, 2008, 36(Database issue): D154-D158. |
[8] | Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168. |
[9] | Zhang B, Pan X, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J]. Plant Journal, 2006, 46(2): 243-259. |
[10] | 方福德. microRNA的研究方法与应用[M]. 北京: 中国协和医科大学出版社, 2008: 16-17. |
[11] | Brodersen P, Voinnet O.Revisiting the principles of microRNA target recognition and mode of action[J]. Nature Reviews Molecular Cell Biologyl, 2009, 10(2): 141-148. |
[12] | Chen X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025. |
[13] | Mallory A C, Vaucheret H.Functions of microRNAs and related small RNAs in plants[J]. Nature Genetics, 2006, 386: S31-S36. |
[14] | Sunkar R, Li Y F, Jagadeeswaran G.Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4): 196-203. |
[15] | Sunkar R, Zhu J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019. |
[16] | Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. |
[17] | Li W X, Oono Y, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8): 2238-2251. |
[18] | Kulcheski F R, de Oliveira L F, Molina L G, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses[J]. BMC Genomics, 2011, 12: 307. |
[19] | Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany, 2009, 103(1): 29-38. |
[20] | Thiebaut F, Rojas C A, Almeida K L, et al. Regulation of miR319 during cold stress in sugarcane[J]. Plant Cell and Environment, 2012, 35(3): 502-512. |
[21] | Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168. |
[22] | Chinnusamy V, Zhu J, Sunkar R.Gene Regulation During Cold Stress Acclimation in Plants[M]. Plant Stress Tolerance, Sunkar R: Humana Press, 2010: 639, 39. |
[23] | Knight M R.Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana[J]. Philosophical Transactions of the Royal Society of London Series B-biological Sciences, 2002, 357(1423): 871-875. |
[24] | 计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展[J]. 生命科学, 2010, 22(10): 1013-1019. |
[25] | Heidarvand L, Maali Amiri R.What happens in plant molecular responses to cold stress?[J]. Acta Physiologiae Plantarum, 2010, 32(3): 419. |
[26] | Guy C.Molecular responses of plants to cold shock and cold acclimation[J]. Journal of Molecular Microbiology and Biotechnology, 1999, 1(2): 231-242. |
[27] | Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730. |
[28] | Stockinger E J, Gilmour S J, Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of The National Academy of Sciences of The United States of America, 1997, 94(3): 1035-1040. |
[29] | Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1391-1406. |
[30] | Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17(8): 1043-1054. |
[31] | Badawi M, Reddy Y V, Agharbaoui Z, et al. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes[J]. Plant Cell Physiol, 2008, 49(8): 1237-1249. |
[32] | Dong C H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of The National Academy of Sciences of The United States of America, 2006, 103(21): 8281-8286. |
[33] | Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry, 2006, 281(49): 37636-37645. |
[34] | Kanaoka M M, Pillitteri L J, Fujii H, et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation[J]. Plant Cell, 2008, 20(7): 1775-1785. |
[35] | Doherty C J, Van Buskirk H A, Myers S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984. |
[36] | Lv D K, Bai X, Li Y, et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays[J]. Gene, 2010, 459(1/2): 39-47. |
[37] | Zhang J, Xu Y, Huan Q, et al. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response[J]. BMC Genomics, 2009, 10: 449. |
[38] | Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5): 836-843. |
[39] | Lu S, Sun Y H, Chiang V L.Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55(1): 131-151. |
[40] | Wu G, Poethig R S.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. |
[41] | 张志明, 宋锐, 彭华, 等. 用生物信息学挖掘玉米中的microRNAs及其靶基因[J]. 作物学报, 2010, 36(8): 1324-1335. |
[42] | 李远志, 赖红华. 冻害对茶树叶片细胞亚显微结构的影响[J]. 福建茶叶, 1987(4): 6-10. |
[43] | 黄建安. 茶树保护性酶类与抗寒性的关系[J]. 茶叶科学, 1990, 10(1): 35-40. |
[44] | 杨亚军, 郑雷英, 王新超. 低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J]. 亚热带植物科学, 2005, 34(1): 5-9. |
[45] | 李叶云, 庞磊, 陈启文, 等. 低温胁迫对茶树叶片生理特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2012(4): 134-138. |
[46] | 邹中伟, Wan-Ping Fang, 张定, 等. 低温胁迫下茶树基因表达的差异分析[J]. 茶叶科学, 2008, 28(4): 249-254. |
[47] | 陈暄, 房婉萍, 邹中伟, 等. 茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 53-59. |
[48] | 房婉萍, 邹中伟, 侯喜林, 等. 茶树冷胁迫诱导H1-histone基因的克隆与序列分析[J]. 西北植物学报, 2009(8): 1514-1519. |
[49] | 陈林波, 李叶云, 房超, 等. 茶树冷诱导基因的AFLP筛选及其表达分析[J]. 西北植物学报, 2011, 31(1): 1-7. |
[50] | 陈林波, 房超, 王郁, 等. 茶树抗逆相关基因ERF的克隆与表达特性分析[J]. 茶叶科学, 2011, 31(1): 53-58. |
[51] | 陈林波, 李叶云, 王琴, 等. 茶树冷诱导基因RAV的克隆与表达特性分析[J]. 植物生理学通讯, 2010(4): 354-358. |
[52] | Wang L, Li X, Zhao Q, et al. Identification of Genes Induced in Response to Low-Temperature Treatment in Tea Leaves[J]. Plant Molecular Biology Reporter, 2009, 27(3): 257. |
[53] | Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359. |
[54] | Wang Y, Jiang C J, Li Y Y, et al. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31(1): 27-34. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 高健健, 陈丹, 彭佳堃, 吴文亮, 蔡良绥, 蔡亚威, 田军, 万云龙, 孙威江, 黄艳, 王哲, 林智, 戴伟东. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学, 2022, 42(5): 623-637. |
[3] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[4] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[5] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[6] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[7] | 陈宇宏, 高颖, 韩震, 尹军峰. 不同种质茶叶籽皂素含量及组成分析[J]. 茶叶科学, 2022, 42(5): 705-716. |
[8] | 陈慧, 杨丽玲, 陈金华, 黄建安, 龚雨顺, 李适. 控温渥堆对黑毛茶香气品质的影响[J]. 茶叶科学, 2022, 42(5): 717-730. |
[9] | 李峥, 刘锭, 霍增辉, 陈富桥. 中国与RCEP成员国茶叶贸易竞争性与互补性分析[J]. 茶叶科学, 2022, 42(5): 740-752. |
[10] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[11] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[12] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[13] | 赵东伟. 大叶茶(Camellia sinensis var. assamica)的命名、模式及自然分布[J]. 茶叶科学, 2022, 42(4): 491-499. |
[14] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[15] | 汪为通, 周孝贵, 张欣欣, 王志博, 张大羽, 肖强. 条纹蝇虎对灰茶尺蠖幼虫的捕食作用[J]. 茶叶科学, 2022, 42(4): 515-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|