[1] |
Bartel D P.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
|
[2] |
Carrington J C, Ambros V.Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631): 336-338.
|
[3] |
Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57: 19-53.
|
[4] |
He L, Hannon G J.MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522-531.
|
[5] |
Rosalind C Lee, Rhonda L Feinbaum, Victor Anbros.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75: 843-854.
|
[6] |
Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
|
[7] |
Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Research, 2008, 36(Database issue): D154-D158.
|
[8] |
Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168.
|
[9] |
Zhang B, Pan X, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J]. Plant Journal, 2006, 46(2): 243-259.
|
[10] |
方福德. microRNA的研究方法与应用[M]. 北京: 中国协和医科大学出版社, 2008: 16-17.
|
[11] |
Brodersen P, Voinnet O.Revisiting the principles of microRNA target recognition and mode of action[J]. Nature Reviews Molecular Cell Biologyl, 2009, 10(2): 141-148.
|
[12] |
Chen X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666): 2022-2025.
|
[13] |
Mallory A C, Vaucheret H.Functions of microRNAs and related small RNAs in plants[J]. Nature Genetics, 2006, 386: S31-S36.
|
[14] |
Sunkar R, Li Y F, Jagadeeswaran G.Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4): 196-203.
|
[15] |
Sunkar R, Zhu J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019.
|
[16] |
Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799.
|
[17] |
Li W X, Oono Y, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8): 2238-2251.
|
[18] |
Kulcheski F R, de Oliveira L F, Molina L G, et al. Identification of novel soybean microRNAs involved in abiotic and biotic stresses[J]. BMC Genomics, 2011, 12: 307.
|
[19] |
Ding D, Zhang L, Wang H, et al. Differential expression of miRNAs in response to salt stress in maize roots[J]. Annals of Botany, 2009, 103(1): 29-38.
|
[20] |
Thiebaut F, Rojas C A, Almeida K L, et al. Regulation of miR319 during cold stress in sugarcane[J]. Plant Cell and Environment, 2012, 35(3): 502-512.
|
[21] |
Naqvi A R, Sarwat M, Hasan S, et al. Biogenesis, functions and fate of plant microRNAs[J]. Journal of Cellular Physiology, 2012, 227(9): 3163-3168.
|
[22] |
Chinnusamy V, Zhu J, Sunkar R.Gene Regulation During Cold Stress Acclimation in Plants[M]. Plant Stress Tolerance, Sunkar R: Humana Press, 2010: 639, 39.
|
[23] |
Knight M R.Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana[J]. Philosophical Transactions of the Royal Society of London Series B-biological Sciences, 2002, 357(1423): 871-875.
|
[24] |
计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展[J]. 生命科学, 2010, 22(10): 1013-1019.
|
[25] |
Heidarvand L, Maali Amiri R.What happens in plant molecular responses to cold stress?[J]. Acta Physiologiae Plantarum, 2010, 32(3): 419.
|
[26] |
Guy C.Molecular responses of plants to cold shock and cold acclimation[J]. Journal of Molecular Microbiology and Biotechnology, 1999, 1(2): 231-242.
|
[27] |
Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors[J]. Journal of Biological Chemistry, 2000, 275(3): 1723-1730.
|
[28] |
Stockinger E J, Gilmour S J, Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of The National Academy of Sciences of The United States of America, 1997, 94(3): 1035-1040.
|
[29] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1391-1406.
|
[30] |
Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development, 2003, 17(8): 1043-1054.
|
[31] |
Badawi M, Reddy Y V, Agharbaoui Z, et al. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes[J]. Plant Cell Physiol, 2008, 49(8): 1237-1249.
|
[32] |
Dong C H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of The National Academy of Sciences of The United States of America, 2006, 103(21): 8281-8286.
|
[33] |
Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry, 2006, 281(49): 37636-37645.
|
[34] |
Kanaoka M M, Pillitteri L J, Fujii H, et al. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation[J]. Plant Cell, 2008, 20(7): 1775-1785.
|
[35] |
Doherty C J, Van Buskirk H A, Myers S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984.
|
[36] |
Lv D K, Bai X, Li Y, et al. Profiling of cold-stress-responsive miRNAs in rice by microarrays[J]. Gene, 2010, 459(1/2): 39-47.
|
[37] |
Zhang J, Xu Y, Huan Q, et al. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response[J]. BMC Genomics, 2009, 10: 449.
|
[38] |
Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5): 836-843.
|
[39] |
Lu S, Sun Y H, Chiang V L.Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55(1): 131-151.
|
[40] |
Wu G, Poethig R S.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547.
|
[41] |
张志明, 宋锐, 彭华, 等. 用生物信息学挖掘玉米中的microRNAs及其靶基因[J]. 作物学报, 2010, 36(8): 1324-1335.
|
[42] |
李远志, 赖红华. 冻害对茶树叶片细胞亚显微结构的影响[J]. 福建茶叶, 1987(4): 6-10.
|
[43] |
黄建安. 茶树保护性酶类与抗寒性的关系[J]. 茶叶科学, 1990, 10(1): 35-40.
|
[44] |
杨亚军, 郑雷英, 王新超. 低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J]. 亚热带植物科学, 2005, 34(1): 5-9.
|
[45] |
李叶云, 庞磊, 陈启文, 等. 低温胁迫对茶树叶片生理特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2012(4): 134-138.
|
[46] |
邹中伟, Wan-Ping Fang, 张定, 等. 低温胁迫下茶树基因表达的差异分析[J]. 茶叶科学, 2008, 28(4): 249-254.
|
[47] |
陈暄, 房婉萍, 邹中伟, 等. 茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 53-59.
|
[48] |
房婉萍, 邹中伟, 侯喜林, 等. 茶树冷胁迫诱导H1-histone基因的克隆与序列分析[J]. 西北植物学报, 2009(8): 1514-1519.
|
[49] |
陈林波, 李叶云, 房超, 等. 茶树冷诱导基因的AFLP筛选及其表达分析[J]. 西北植物学报, 2011, 31(1): 1-7.
|
[50] |
陈林波, 房超, 王郁, 等. 茶树抗逆相关基因ERF的克隆与表达特性分析[J]. 茶叶科学, 2011, 31(1): 53-58.
|
[51] |
陈林波, 李叶云, 王琴, 等. 茶树冷诱导基因RAV的克隆与表达特性分析[J]. 植物生理学通讯, 2010(4): 354-358.
|
[52] |
Wang L, Li X, Zhao Q, et al. Identification of Genes Induced in Response to Low-Temperature Treatment in Tea Leaves[J]. Plant Molecular Biology Reporter, 2009, 27(3): 257.
|
[53] |
Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359.
|
[54] |
Wang Y, Jiang C J, Li Y Y, et al. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31(1): 27-34.
|