[1] Hieter P, Boguski M.Functional genomics: it’s all how you read it?[J]. Science, 1997, 278: 601-602. [2] Tanaka J, Taniguchi F.Estimation of the genome size of tea (Camellia sinensis), camellia (C. japonica), and their interspecific hybrids by flow cytometry[J]. Journal of the Remote Sensing Society of Japan, 2006, 101: 1-7. [3] Rudd S.Expressed sequence tags:alternative or complement to whole genome sequences?[J]. Trends in Plant Science, 2003, 8(7): 32l-329. [4] Huminiecki L, Bicknell R.In silico cloning of novel endothelial specific genes[J]. Genome Research, 2000, 10(11): 1796-1806. [5] Schuler GD.Pieces of the puzzle: expressed sequence tags and the catalog of human genes[J]. Journal of Molecular Medicine, 1997, 75(10): 694-698. [6] 骆蒙, 贾继增. 植物基因组表达序列标签(EST)计划研究进展[J]. 生物化学与生物物理进展. 2001, 28(4): 494-497. [7] 徐昌杰, 朱长青, 高中山, 等. 果树EST在果实发育和成熟研究中的应用[J]. 果树学报, 2009, 26(3): 353-360. [8] 甘四明, 苏晓华. 林木基因组学研究进展[J]. 植物生理与分子生物学学报, 2006, 32(2): 133-142. [9] 王伟, 朱平, 程克棣. 药用植物基因组及EST研究[J]. 中国生物工程杂志, 2004, 24(1):1-3. [10] 李柱刚, 崔崇士, 马荣才, 等. 芸薹属植物基因组学研究进展[J]. 中国生物工程杂志, 2005, 25(8): 30-34. [11] Takeuchi A, Matsumoto A and Hayatsu M. Chalcone synthase from Camellia sinensis: isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes[J]. Plant Cell Physiology, 1994, 35(7): 1011-1018. [12] Matsumoto S, Takeuchi A and Hayatsu M. Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probe[J]. Theoretical and Applied Genetics, 1994, 89: 671-675. [13] Kato M, Mizuno K, Crozie A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956-957. [14] Mizutani M, Nakanishi H, Ema J, et al. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation[J]. Plant Physiology, 2002, 130: 2164-2176. [15] Chen L, Zhao LP, Gao QK.Generation and analysis of expressed sequence tags from the tender shoot cDNA library of tea plant (Camellia sinensis)[J].Plant Science, 2005, 168: 359-363. [16] 赵丽萍,马春雷,陈亮. 茶树幼根cDNA文库构建及其表达序列标签特性分析[J]. 分子植物育种, 2008, 6(5): 893-898. [17] 马春雷, 赵丽萍, 张亚丽, 等. 茶树查尔酮异构酶基因克隆及序列分析[J]. 茶叶科学, 2007, 27(2): 127-132. [18] 马春雷, 陈亮. 茶树黄酮醇合成酶基因的克隆与原核表达[J]. 基因组学与应用生物学, 2009, 28(3): 433-438. [19] 马春雷, 乔小燕, 陈亮. 茶树无色花色素还原酶基因克隆及表达分析[J]. 茶叶科学, 2010, 30(1): 27-36. [20] 张亚丽, 赵丽萍, 马春雷, 等. 茶树亲环素基因cDNA 全长的分析鉴定与原核表达[J]. 茶叶科学, 2007, 27(2): 120-126. [21] 张亚丽, 乔小燕, 陈亮. 茶树ACC氧化酶基因全长cDNA的克隆与表达分析[J]. 茶叶科学, 2008, 28(6):459-467. [22] 史成颖, 宛晓春, 江昌俊, 等. 茶苗嫩根cDNA文库的构建和EST分析[J]. 南京农业大学学报, 2009, 32(1): 126-130. [23] 李冬花, 姚丽娟, 余有本, 等. 特异茶树种质紫阳1号cDNA文库构建及ESTs初步分析[J]. 安徽农业大学学报, 2009, 36(3): 347-350. [24] Shi CY, Yang H, Wei CL, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12: 131. [25] Park JS, Kim JB, Hahn BS, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization[J]. Plant Science, 2004, 166: 953-961. [26] 王丽鸳. 基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究[D]. 北京: 中国农业科学院, 2011. [27] 韦朝领, 高香凤, 叶爱华, 等. 基于DDRT-PCR 研究茶树对茶尺蠖取食诱导的基因表达谱差异[J]. 茶叶科学, 2007, 27(2): 133-140. [28] 童鑫. 基于SSH技术研究茶树被茶尺蠖取食诱导的基因差异表达[D]. 合肥: 安徽农业大学硕士学位论文, 2010. [29] 乔金莲, 张娅婷, 朱小佩, 等. 从茶树幼苗中分离茶尺蠖取食诱导的基因[J]. 园艺学报, 2011, 38(4): 783-789. [30] 王新超, 赵丽萍, 姚明哲, 等. 安吉白茶正常与白化叶片基因表达差异的初步研究[J]. 茶叶科学, 2008, 28(1): 50-55. [31] 李娟, 刘硕谦, 刘仲华, 等. “安吉白茶”抑制消减杂交cDNA文库的构建及初步分析[J]. 中国农学通报, 2011, 27(4): 96-101. [32] 王新超, 杨亚军, 陈亮, 等. 茶树休眠芽与萌动芽抑制消减杂交文库的构建与初步分析[J]. 茶叶科学, 2010, 30(2): 129-135. [33] 王新超, 马春雷, 杨亚军, 等. 茶树生长素抑制蛋白基因CsARP1的克隆与表达分析[J]. 核农学报, 2011, 25(5): 910-915. [34] 王新超, 杨亚军, 马春雷, 等. 茶树细胞周期蛋白基因的克隆与表达[J]. 西北植物学报, 2011, 31(12): 2365-2372. [35] Krishnaraj T, Gajjeraman P, Palanisamy S, et al. Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach[J]. Plant Physiology and Biochemistry, 2011, 49:565-571. [36] Wang L, Li XW, Zhao Q, et al. Identification of genes induced in response to low-temperature treatment in tea leaves[J]. Plant Molecular Biology Reporter, 2009, 27: 257-265. [37] Gohain B, Borchetia S, Bhorali P, et al. Understanding Darjeeling tea flavor on a molecular basis[J]. Plant Molecular Biology, 2012, 78(6): 577-597. [38] Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science, 1995, 270: 467-470. [39] Zhao HN, Hashida H, Takahashi N, et al. High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression[J]. Gene, 1995, 156: 207-213. [40] Bowtell D.Options available-from start to finish-for obtaining expression data by microarray[J]. Nature Genetics (supplement), 1999, 21: 25-31. [41] Wang RC, Guegler K, LaBrie ST, et al. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate[J]. The Plant Cell, 2000, 12(8): 1491-1510. [42] Narusaka Y, Narusaka M, Seki M, et al. The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack[J]. Plant Cell Physiology, 2003, 44(4): 377-387. [43] 马智华, 万立华, 晏珩, 等. 利用基因芯片技术研究电击伤后心肌组织基因表达谱的改变[J]. 第三军医大学学报, 2005, 27(15): 1561-1563. [44] 黄迎春, 孙春昀, 冯红, 等. 利用基因芯片检测转基因作物[J]. 遗传, 2003, 25(3): 307-310. [45] 赵丽萍, 高其康, 陈亮, 等. 茶树基因芯片的研制和初步应用[J]. 茶叶科学, 2006, 26(3): 166-170. [46] 张祖新, 张方东, 郑用琏. 功能基因组学及其研究方法[J]. 作物学报, 2003, 29(2): 194-201. [47] 马春雷, 姚明哲, 王新超, 等. 利用基因芯片筛选茶树芽叶紫化相关基因[J]. 茶叶科学, 2011, 31(1): 59-65. [48] 李子银, 陈受宜. 植物的功能基因组学研究进展[J]. 遗传, 2000, 22(1): 57-60. [49] Settles AM, Yonetani A, Baron A, et al. Sec-independent protein translocation by the maize Hcf106 Protein[J]. Science, 1997, 278(5342): 1467-1470. [50] Cui XQ, Wise RP, Schnable PS.The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science, 1996, 272(5266): 1334-1336. [51] Mondal TK, Bhattacharya A, Ahuja PS, et al. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos[J]. Plant Cell Reports, 2001, 20: 712-720. [52] Lopez SJ, Rajkumar R, Pius PK, et al. Agrobacterium tumefaciens-mediated genetic transformation in tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Molecular Biology Reports, 2004, 22: 201-209. [53] Jeyaramraja PR, Meenakshi S.Agrobacterium tumefaciens-mediated transformation of embryogenic tissues of tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Molecular Biology Reports, 2005, 23: 299-300. [54] Sandal I, Saini U, Lacroix B, et al. Agrobacterium-mediated genetic transformation of tea leaf explants: Effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence[J]. Plant Cell Reports, 2007, 26: 169-176. [55] Vandel Krol AR, De Lange P.Antisense chaconne synthase genes in petunia: Visualization of variable transgene expression[J]. Molecular Genetics and Genomics, 1990, 220: 204-212. [56] Bird CR, Ray JA, Fletcher JD, et al. Using antisense RNA to study gene function: inhibition of corotenoid biosynthesis in transgenic tomatoes[J]. Nature Biotechnology, 1991, 9: 635-639. [57] Mohanpuria P, Rana NK, Yadav SK.Transient RNAi based gene silencing of glutathione synthase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos[J]. Biologia Plantarum, 2008, 52(2): 381-384. [58] 张广辉, 梁月荣, 陆建良, 等. 茶树咖啡因合成酶基因RNA干涉表达载体构建[J]. 茶叶科学, 2006, 26(4): 243-248. [59] Mohanpuria P, Kumar V, Ahuja PS, et al. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L[J]. Molecular Biotechnology. 2011, 48(3): 235-243. [60] McCallum CM, Comai L, Greene EA, et al. Target induced local lesions in genomes(TILLING) for plant functional genomics[J]. Plant Physiology, 2000, 123: 439-442. [61] Comai L, Young K, Till BJ, et al. Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING[J]. The Plant Journal, 2004, 37: 778-786. [62] Han SS, Cho YC, Kim YH, et al. Association genetics to identify broad spectrum resistance against blast disease in Korean rice germplasm[C]//Jeju, Korea, Korea: Crop Functional Genomics Symposium: poster abstract GM26, 2004. [63] Henikoff S, Comai L.Single nucleotide mutations for plant functional genomics[J]. Annual Review Plant Biology, 2003, 54: 375-401. [64] 金基强, 陈亮, 姚明哲, 等. 茶树简化EcoTILLING技术的建立[J]. 茶叶科学, 2010, 30(1): 19-26. |