[1] Santner A, Li CV, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nat Chem Biol, 2009, 5(5): 301-307. [2] 张亚丽, 乔小燕, 陈亮. 茶树ACC合成酶基因的克隆及其生物信息学分析[J].茶叶科学, 2008, 28(4): 235-241. [3] Singh K, Kumar S, Ahuja PS.Differential expression of histone H3 gene in tea [Camellia sinensis (L.) O. Kuntze] suggests its role in growing tissue[J]. Mol Biol Rep, 2009, 36(3): 537-542. [4] Liu S, Han B.Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biol, 2010, 10: 228. [5] 陈宗懋. 中国茶经[M]. 上海: 上海文化出版社, 1992: 58-59. [6] 粟本文, 黄亚辉, 郑宏发, 等. 茶树年生育过程内源激素含量变化研究[J]. 福建茶叶, 2003, (4): 2-3. [7] 钱利生, 潘根生, 沈生荣. 内源吲哚乙酸和吲哚乙醛含量与茶树新梢生育的关系及外源α-萘乙酸对新梢生育和内源激素的影响[J]. 茶叶科学, 1997, 17(增刊): 92-95. [8] 潘根生. 茶树生育与内源生长素和脱落酸的关系[J]. 茶叶科学, 1991, 11(1): 25-28. [9] 潘根生, 沈生荣, 钱利生, 等. 茶树新梢生育的内源激素水平及其调控机理(第一报): 茶树新梢生育过程激素水平的季节变化[J]. 茶叶, 2000, 26(3): 139-143. [10] McSteen P, Leyser O. Shoot branching[J]. Annu Rev Plant Biol, 2005, 56: 353-374. [11] 潘根生, 沈生荣, 吴伯千, 等. 茶树新梢内源玉米素的检测及分布[J]. 茶叶科学, 1995, 15(2): 117-120. [12] Yu LJ, Shi YF, Xiao HY, et al. Dynamic changes of endogenous GA3 and ABA contents in tea cultivars with different phenological characters and their impact on the regulation axillary buds sprouting[J]. Acta Agronomica Sinica, 2008, 34(2): 277-283. [13] 黄亚辉, 粟本文, 郑红发, 等. 茶树春梢萌动期间内源激素含量的变化(简报)[J]. 植物生理学通讯, 2001, 37(4): 306-307. [14] Pan GS, Masaki T, Shigeki k. A Study on the relationships between the growth of tea and endogenous hormones IAA and ABA[J]. Acta Agriculture Universitatis Zhejiangensis, 1992, 18(s): 133-137. [15] 钱利生, 沈生荣, 潘根生. 茶树新梢内源激素的HPLC分析及日变化[J]. 茶叶科学, 1996, 16(2): 135-139. [16] 郜爱玲, 李建安, 刘儒, 等. 高等植物花芽分化机理研究进展[J]. 经济林研究, 2010, 28(2): 131-135. [17] 曲波, 张微, 陈旭辉, 等. 植物花芽分化研究进展[J]. 中国农学通报, 2010, 26(24): 109-114. [18] Zhang SC, Yang CW, Peng JZ, et al. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana[J]. Plant Mol Biol, 2009, 69: 745-759. [19] 曾贞, 黄亚辉, 粟本文, 等. 茶树成花前后内源激素含量的变化研究[J]. 茶叶通讯, 2002, 3: 7-9. [20] Rieu I, Omar RR, Nieves FG, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. Plant J, 2008, 53: 488-504. [21] Khryanin VN.Role of phytohormones in sex differentiation in Plants[J]. Russian Journal of Plant Physiology, 2002, 49(4): 545-551. [22] Peng JR.Gibberellin and jasmonate crosstalk during stamen development[J]. Journal of Integrative Plant Biology, 2009, 51(12): 1064-1070. [23] 黄亚辉, 粟本文, 曾贞, 等. 外源激素调控茶树成花的研究[J]. 茶叶通讯, 2002, 4: 3-7. [24] Bhattacharya A, Nagar PK, Ahuja PS.Changes in endogenous indole-3-acetic acid and some biochemical parameters during seed development in Camellia sinensis (L.) O. Kuntze[J]. Acta physiol plantarum, 2004, 26(4): 399-404. [25] Kakkar RK, Nagar PK.Distribution and changes in endogenous polyamines during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Plant Physiol, 1997, 151: 63-67. [26] Nagar PK, Kumar A.Changes in endogenous gibberellin activity during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Acta Physiol Plant, 2000, 22: 439-443. [27] Gupta D, Bhardwaj R, Nagar PK, et al. Isolation and characterization of brassinosteroides from leaves of Camellia sinensis (L.) O. Kuntze[J]. Plant Growth Reg, 2004, 42: 97-100. [28] Nagar PK, Sood S.Changes in endogenous auxins during winter dormancy in tea [Camellia sinensis (L.) O. Kuntze][J]. Acta Physiol Plantarum, 2006, 28(2): 165-169. [29] 潘根生, 沈生荣, 吴伯千, 等. 茶树新梢生育过程内源激素水平变化[J]. 茶叶科学, 1997, 17(增刊): 86-91. [30] 潘根生, 钱利生, 沈生荣, 等. 茶树新梢生育的内源激素水平及其调控机理(第二报): 茶树休眠与内源激素的关系[J]. 茶叶, 2000, 26(4): 200-204. [31] Sorce C, Lombardi L, Giorgetti L, et al. Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars[J]. Journal of Plant Physiology, 2009, 166: 1023-1033. [32] Paul A, Kumar S.Responses to winter dormancy, temperature, and plant hormones share gene networks[J]. Funct Integr Genomics, 2011, 11: 659-664. [33] Besnard F, Vernoux T, Hamant O.Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals[J]. Cell Mol Life Sci, 2011, 68: 2885-2906. [34] 吴彩, 方兴汉. 茶树解除休眠前后体内激素等物质变化及锌的积极影响[J]. 作物学报, 1999, 19(2): 179-184. [35] Nagar PK.Changes in abscisic acid, phenols and indoleacetic acid in bulbs of tuberose (Polianthes tuberosa L.) during dormancy and sprouting[J]. Scientia Horticulturae, 1995, 63: 77-82. [36] 钱利生, 潘根生, 沈生荣. 茶叶赤霉酸对茶树新梢生育及内源激素的影响[J]. 茶叶科学, 1997, 17(增刊): 96-99. [37] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理(第四报): 外源激素对茶树内源激素的影响及其与新梢生长的关系[J]. 茶叶, 2001, 27(2): 25-29. [38] 杨恕玲, 单守明, 巩传银, 等. 水杨酸对休眠期茶树光合作用和抗冻性的影响[J]. 中国农学通报, 2009, 25(15): 121-124. [39] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒3及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182. [40] Singh K, Kumar S, Rani A, et al. Phenylalanine ammonia-lyase (PAL) and cinnamate4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Funct. Integr. Genomics, 2009, 9: 125-134. [41] 林坤律, 高锦华. 赤霉素对茶树新梢生长、茶叶品质和产量的影响[J]. 植物生理学通讯, 1981, 3: 22-27. [42] Golldack D, Lü KI, Yang O.Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Rep, 2011, 30: 1383-1391. [43] 潘根生, 钱利生, 吴伯千, 等. 茶树新梢生育的内源激素水平及其调控机理(第三报): 干旱胁迫对茶树内源激素的影响[J]. 茶叶, 2001, 27(1): 35-38. [44] 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15. [45] Spollen WG, Sharp RE.Role of ABA in root growth maintenance low water potentials involves regulation of ethylene synthesis or responsiveness[J]. plant physiol, 1994, 106(2): 617-625. [46] 王华芳, 张建华, 梁建生, 等.木本植物根系及木质部汁液ABA对土壤干旱信息的感应[J]. 科学通报, 1999, 44(19): 2053-2058. [47] Ghanem ME, Hichri I, Smigocki AC, et al. Root-targeted biotechnology to mediate hormonal signaling and improve crop stress tolerance[J]. Plant Cell Rep, 2011, 30(5): 807-823. [48] Groppa MD, Benavides MP.Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34: 35-45. [49] Alcázar R, Altabella T, Marco F.Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231: 1237-1249. [50] Khandelwal A, Cho SH, Marella H, et al. Role of ABA and ABI3 in desiccation tolerance[J]. Science, 2010, 327: 546. [51] Kovács Z, Livia SS, Szǖcs A, et al. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat[J]. Amino Acids, 2010, 38: 623-631. [52] Bari R, Jones JD.Role of plant hormones in plant defence responses[J]. Plant Mol Biol, 2009, 69: 473-488. [53] 蔡晓明, 孙晓玲, 董文霞, 等. 应用zNoseTM分析被害茶树的挥发物[J]. 生态学报, 2009, 29(1): 169-177. [54] 桂连友, 刘树生, 陈宗懋. 外源茉莉酸和荣莉酸甲酯诱导植物抗虫作用及其机理[J]. 昆虫学报, 2004, 47(4): 507-514. [55] 王三根. 细胞分裂素在植物抗逆和延衰中的作用[J]. 植物学通报, 2000, 17(2): 121-126. [56] Engelbrecht L, Organ U, Heese W.Leafminer cuterpillars and cytokinins in the green islands of autremn leaves[J]. Nature, 1969, 233: 319. [57] 李国婧, 周燮. 水杨酸与植物抗非生物胁迫[J]. 植物学通报, 2001, 18(3): 295-302. [58] 杨伟, 简桂良, 赵磊, 等. 乙烯代谢与植物抗病性[C]//成卓敏. 科技创新与绿色植保——中国植物保护学会2006学术年会论文集. 北京: 中国农业科学技术出版社, 2006: 194-201. [59] 江昌俊. 茶树育种学[M]. 北京: 中国农业出版社, 2005: 162. [60] 吴扬, 邓婷婷, 黄建安. 茶树组织培养的影响因素及应用展望[J]. 茶叶通讯, 2009, 36(2): 14-17. [61] 张亚萍, 邵鸿刚. 不同茶树品种组织培养的初步研究[J]. 贵州茶叶, 2002, 4: 10-12. [62] 郭玉琼, 陈财珍, 赖钟雄, 等. 茶树花药愈伤组织诱导及茶多酚含量测定[J]. 福建茶叶, 2001, 4: 7-10. [63] Mondal TM, Bhattacharya A, Sood A, et al. Micropropagation of tea [camellia sinensis (L.)O. Kuntze] using thidiazuron[J]. Plant Growth Reg, 1998, 26: 57-61. [64] Sandal I, Bhattacharya A, Ahuja PS.An efficient liquid culture system for tea shoot proliferation[J]. Plant Cell, Tissue and Organ Culture, 2001, 65: 75-80. [65] Sharma P, Pandey S, Bhattacharya A, et al. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze[J]. J Plant Physiol, 2004, 161(11): 1269-1276. [66] 梁金波, 张强, 戴居会. 茶树“二段法”快繁育苗水培生根技术研究试验初探[J]. 茶叶, 2009, 35(1): 14-16. [67] 周健, 成浩, 王丽鸳. 激素处理对茶树组培苗温室内直接诱导生根的影响[J]. 茶叶科学, 2005, 25(4): 265-269. [68] Ponsamuel J, Samon NP, Ganeshan PS, et al. Somatic embryogenesis and regeneration from the immature cotyledonary tissues of cultivate tea[Camellia sinensis(L). O. Kuntze][J]. Plant Cell Rep, 1996, 16: 210-221. [69] 周健, 成浩, 王丽鸳. 茶树幼胚培养萌发率与再生途径影响因素研究[J]. 西南农业学报, 2008, 21(2): 440-443. [70] 谭和平, 余桂荣, 杜文平, 等. 不同茶树品种组培快繁技术研究[J]. 西南农业学报, 2003, 16(1): 102-105. [71] Akulaa, Doddwa.Direct somatic embryogenesis in a selected tea clone, “TR-2025” [Camellia sinensis (L.) O. Kuntze] from nodalex plants[J]. Plant Cell Rep, 1998, 17(10): 804-809. [72] 黄亚辉. 茶树茎尖培养研究初报[J]. 茶叶通讯, 1992, 2: 18-20. [73] Shibata M, Kuranuki Y.Improvement of medium components for in vitro cuttings of tea plant (1) Effects of concentrations between MS medium and woody plant medium[J]. Tea Industry Research Rep, 1993, 77: 39-45. [74] Yoichi S.Differentiation of adventitious buds from stem segment culture of Camellis sinensis (L.) O. Kuntze[J]. Tea Industry Research Rep, 1998, 87(S): 44-45. [75] 刘德华, 廖利民, 周带娣. 茶树组织培养研究II腋芽微繁殖和叶微繁殖技术的研究[J]. 湖南农学院院报, 1991, 17(增刊): 589-599. [76] 王云. 不同激素配比对茶树苗组织培养的影响[J]. 安徽农业科技, 2006, 34(14): 3312-3313. [77] 杨国伟, 兰蓉, 王晓杰, 等. 茶树愈伤组织诱导和组织培养[J]. 江苏农业科技, 2006, 4: 122-125. [78] Dharmasiri N, Dharmasiri S, Estelle M.The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445. [79] Kepiski S, Leyer O.The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451. [80] Tan X, LI CV, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136): 640-645. [81] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et a1. Gibberellin in sensitive dwarf 1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437: 693-698. [82] Nakajima, Shimada A, Takashi Y, et al. Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J, 2006, 46: 880-889. [83] Higuchi M, Pischke MS, MähÖnen AP, et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. Proc Natl Acad Sci USA, 2004, 101(23): 8821-8826. [84] Hua J, ChangC, Sun Q, et al. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science, 1995, 269(2531): 1712-1714. [85] Hua J, Sakai H, Nourizadeh S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1321-1332. [86] Chang C, Stadler R.Ethylene hormone receptor action in Arabidopsis[J]. BioEssays, 2001, 23(7): 619-627. [87] Melcher K, Ng LM, Zhou XE, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009, 462(7273): 602-608. [88] Nishimura N, Sarkeshik A, Nito K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. Plant J, 2010, 61(2): 290-299. [89] Li J, Wen J, Lease KA, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2): 213-222. [90] Nam KH, Li J.BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2): 203-212. [91] Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405. [92] Rubio V, Bustos R, Irigoyen ML, et al. Plant hormones and nutrient signaling[J]. Plant Mol Biol, 2009, 69: 361-373. |