茶叶科学 ›› 2019, Vol. 39 ›› Issue (3): 231-246.doi: 10.13305/j.cnki.jts.2019.03.001
• • 下一篇
张姝萍,王岳飞,徐平
收稿日期:
2018-07-04
修回日期:
2018-09-07
出版日期:
2019-06-15
发布日期:
2019-06-15
通讯作者:
张姝萍, E-mail:996829620@qq.com
作者简介:
张姝萍,女,硕士研究生,主要从事天然产物与人体健康及其机理研究。*通信作者:zdxp@zju.edu.cn
基金资助:
ZHANG Shuping, WANG Yuefei, XU Ping
Received:
2018-07-04
Revised:
2018-09-07
Online:
2019-06-15
Published:
2019-06-15
Contact:
ZHANG Shuping, E-mail:996829620@qq.com
摘要: 动脉粥样硬化是多种心血管疾病的重要病理基础,对心脑血管的损害可累及全身各个器官。茶多酚能 够通过抗炎、调节血脂水平、抑制LDL 氧化修饰、改善内皮功能、保持斑块稳定性等不同途径有效预防动脉 粥样硬化。本文就近年来茶多酚对动脉粥样硬化的预防功能与机理方面的研究进行综述。
中图分类号:
张姝萍,王岳飞,徐平. 茶多酚对动脉粥样硬化的预防作用与机理研究进展[J]. 茶叶科学, 2019, 39(3): 231-246. doi: 10.13305/j.cnki.jts.2019.03.001.
ZHANG Shuping, WANG Yuefei, XU Ping. Prevention of Tea Polyphenols on Atherosclerosis and Relative Mechanisms[J]. Journal of Tea Science, 2019, 39(3): 231-246. doi: 10.13305/j.cnki.jts.2019.03.001.
[1] | World Health Organization. Cardiovascular diseases (CVDs) [OL]. (2017-05-17)[2018-07-04]. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). |
[2] | World Health Organization. World Health Statistics 2017: Monitoring health for the SDGs [OL]. (2017-05-17)[2018-07-04]. http://www.who.int/ gho/ publications/world_health_statistics/2017/en. |
[3] | 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告 2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8. |
[4] | Libby P. Changing concepts of atherogenesis [J]. Journal of internal medicine, 2000, 247(3): 349-358. |
[5] | Lusis A J. Atherosclerosis [J]. Nature, 2000, 407(6801): 233-241. |
[6] | 李露, 吕佳倩, 江承佳, 等. 茶多酚对心血管保护作用的研究进展[J]. 食品科学, 2016, 37(19): 283-288. |
[7] | Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s [J]. Nature, 1993, 362(6423): 801-809. |
[8] | Sasazuki S, Kodama H, Yoshimasu K, et al. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women [J]. Annals of epidemiology, 2000, 10(6): 401-408. |
[9] | Sano J, Inami S, Seimiya K, et al. Effects of green tea intake on the development of coronary artery disease [J]. Circulation Journal, 2004, 68(7): 665-670. |
[10] | Wen W, Xiang Y B, Zheng W, et al. The association of alcohol, tea, and other modifiable lifestyle factors with myocardial infarction and stroke in Chinese men [J]. CVD prevention and control, 2008, 3(3): 133-140. |
[11] | Kim W, Jeong M H, Cho S H, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers [J]. Circulation Journal, 2006, 70(8): 1052-1057. |
[12] | Coimbra S, Santos-Silva A, Rocha-Pereira P, et al. Green tea consumption improves plasma lipid profiles in adults [J]. Nutrition research, 2006, 26(11): 604-607. |
[13] | Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans [J]. Obesity, 2007, 15(6): 1473-1483. |
[14] | Wang Q M, Gong Q Y, Yan J J, et al. Association between green tea intake and coronary artery disease in a Chinese population [J]. Circulation Journal, 2010, 74(2): 294-300. |
[15] | Widlansky M E, Hamburg N M, Anter E, et al. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease [J]. Journal of the American College of Nutrition, 2007, 26(2): 95-102. |
[16] | Kuriyama S, Shimazu T, Ohmori K, et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study [J]. Jama, 2006, 296(10): 1255-1265. |
[17] | Mineharu Y, Koizumi A, Wada Y, et al. Coffee, green tea, black tea and Oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women [J]. Journal of Epidemiology Community Health, 2010, 65(3): 230-240. |
[18] | Suzuki E, Yorifuji T, Takao S, et al. Green tea consumption and mortality among Japanese elderly people: the prospective Shizuoka elderly cohort [J]. Annals of epidemiology, 2009, 19(10): 732-739. |
[19] | Saito E, Inoue M, Sawada N, et al. Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: the Japan public health center-based prospective study (JPHC Study) [J]. Annals of epidemiology, 2015, 25(7): 512-518. e3. |
[20] | Higdon J V, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions [J]. 2003, 43(1): 89-143. |
[21] | Van den Brandt P A. Coffee or Tea? A prospective cohort study on the associations of coffee and tea intake with overall and cause-specific mortality in men versus women [J]. European journal of epidemiology, 2018, 33(2): 183-200. |
[22] | Tian C, Huang Q, Yang L, et al. Green tea consumption is associated with reduced incident CHD and improved CHD-related biomarkers in the Dongfeng-Tongji cohort [J]. Scientific Reports, 2017. https://doi.org/10.1038/srep45949. |
[23] | Yamagata K, Xie Y, Suzuki S, et al. Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells [J]. Phytomedicine, 2015, 22(4): 431-437. |
[24] | Naito Y, Yoshikawa T. Green tea and heart health [J]. Journal of cardiovascular pharmacology, 2009, 54(5): 385-390. |
[25] | Ludwig A, Lorenz M, Grimbo N, et al. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells [J]. Biochemical and biophysical research communications, 2004, 316(3): 659-665. |
[26] | Li M, Liu J T, Pang X M, et al. Epigallocatechin-3-gallate inhibits angiotensin II and interleukin-6-induced C-reactive protein production in macrophages [J]. Pharmacological Reports, 2012, 64(4): 912-918. |
[27] | Wang C J, Liu J T, Guo F. (-)-Epigallocatechin gallate inhibits endothelin-1-induced C-reactive protein production in vascular smooth muscle cells [J]. Basic & clinical pharmacology & toxicology, 2010, 107(2): 669-675. |
[28] | Won S M, Park Y H, Kim H J, et al. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway [J]. Experimental and Molecular Medicine, 2006, 38(5): 525-534. |
[29] | Zhang S H, Reddick R L, Piedrahita J A, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E [J]. Science, 1992, 258(5081): 468-471. |
[30] | Chyu K Y, Babbidge S M, Zhao X, et al. Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice [J]. Circulation, 2004, 109(20): 2448-2453. |
[31] | Mika M, Kostogrys R B, Franczyk-?arów M, et al. Anti-atherosclerotic activity of catechins depends on their stereoisomerism [J]. Atherosclerosis, 2015, 240(1): 125-130. |
[32] | Hayek T, Fuhrman B, Vaya J, et al. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17(11): 2744-2752. |
[33] | Morrison M, van der Heijden R, Heeringa P, et al. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo [J]. Atherosclerosis, 2014, 233(1): 149-156. |
[34] | Auclair S, Milenkovic D, Besson C, et al. Catechin reduces atherosclerotic lesion development in apo E-deficient mice: a transcriptomic study [J]. Atherosclerosis, 2009, 204(2): e21-e27. |
[35] | Ridker P M, Hennekens C H, Roitman-Johnson B, et al. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men [J]. The Lancet, 1998, 351(9096): 88-92. |
[36] | Martinovic I, Abegunewardene N, Seul M, et al. Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease [J]. Circulation Journal, 2005, 69(12): 1484-1489. |
[37] | Chae Y J, Kim C H, Ha T S, et al. Epigallocatechin-3-O-gallate inhibits the angiotensin II-induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways [J]. Cellular Physiology and Biochemistry, 2007, 20(6): 859-866. |
[38] | Ludwig A, Lorenz M, Grimbo N, et al. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells [J]. Biochemical and Biophysical Research Communications, 2004, 316(3): 659-665. |
[39] | Ahn H Y, Xu Y, Davidge S T. Epigallocatechin-3-O-gallate inhibits TNFα-induced monocyte chemotactic protein-1 production from vascular endothelial cells [J]. Life Sciences, 2008, 82(17/18): 964-968. |
[40] | Nelken N A, Coughlin S R, Gordon D, et al. Monocyte chemoattractant protein-1 in human atheromatous plaques [J]. The Journal of Clinical Investigation, 1991, 88(4): 1121-1127. |
[41] | Yu X, Dluz S, Graves D T, et al. Elevated expression of monocyte chemoattractant protein 1 by vascular smooth muscle cells in hypercholesterolemic primates [J]. Proceedings of the National Academy of Sciences, 1992, 89(15): 6953-6957. |
[42] | Wang Z M, Gao W, Wang H, et al. Green tea polyphenol epigallocatechin-3-gallate inhibits TNF-a-induced production of monocyte chemoattractant protein-1 in human umbilical vein endothelial cells [J]. Cellular Physiology and Biochemistry, 2014, 33(5): 1349-1358. |
[43] | Ramesh E, Geraldine P, Thomas P A. Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis [J]. Chemico-Biological Interactions, 2010, 183(1): 125-132. |
[44] | Das S, Babick A P, Xu Y J, et al. TNF-α-mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy [J]. Journal of Cellular and Molecular Medicine, 2010, 14(7): 1988-1997. |
[45] | Wheeler D S, Catravas J D, Odoms K, et al. Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1β-dependent proinflammatory signal transduction in cultured respiratory epithelial cells [J]. The Journal of Nutrition, 2004, 134(5): 1039-1044. |
[46] | Kürbitz C, Heise D, Redmer T, et al. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells [J]. Cancer Science, 2011, 102(4): 728-734. |
[47] | Baines C P, Molkentin J D. Stress signaling pathways that modulate cardiac myocyte apoptosis [J]. Journal of Molecular and Cellular Cardiology, 2005, 38(1): 47-62. |
[48] | Matsui T, Rosenzweig A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt [J]. Journal of Molecular and Cellular Cardiology, 2005, 38(1): 63-71. |
[49] | Armstrong S C. Protein kinase activation and myocardial ischemia/reperfusion injury [J]. Cardiovascular Research, 2004, 61(3): 427-436. |
[50] | Yang D, Liu J, Tian C, et al. Epigallocatechin gallate inhibits angiotensin II-induced endothelial barrier dysfunction via inhibition of the p38 MAPK/HSP27 pathway [J]. Acta Pharmacologica Sinica, 2010, 31(10): 1401. |
[51] | Takeshita K, Satoh M, Ii M, et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis [J]. Circulation Research, 2007, 100(1): 70-78. |
[52] | Marchant D J, Boyd J H, Lin D C, et al. Inflammation in myocardial diseases [J]. Circulation Research, 2012, 110(1): 126-144. |
[53] | Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF [J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 1-18. DOI: 10.1155/2015/610813. |
[54] | Croquelois A, Domenighetti A A, Nemir M, et al. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway [J]. Journal of Experimental Medicine, 2008, 205(13): 3173-3185. |
[55] | Kratsios P, Catela C, Salimova E, et al. Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart [J]. Circulation Research, 2010, 106(3): 559-572. |
[56] | Li Y, Takeshita K, Liu P Y, et al. Smooth muscle Notch1 mediates neointimal formation after vascular injury [J]. Circulation, 2009, 119(20): 2686-2692. |
[57] | Xie H, Sun J, Chen Y, et al. EGCG attenuates uric acid-induced inflammatory and oxidative stress responses by medicating the NOTCH pathway [J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 1-10. |
[58] | Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives [J]. Current Medicinal Chemistry, 2016, 23(36): 4135-4150. |
[59] | 马兰, 张基昌, 崔燕, 等. MicroRNAs 与冠心病发生发展关系的研究进展[J]. 中国实验诊断学, 2013, 17(7): 1354-1357. |
[60] | Albinsson S, Suarez Y, Skoura A, et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30(6): 1118-1126. |
[61] | Cipollone F, Felicioni L, Sarzani R, et al. A unique microRNA signature associated with plaque instability in humans [J]. Stroke, 2011, 42(9): 2556-2563. |
[62] | Fix L N, Shan M, Efferth T, et al. MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60 [J]. Cancer Genomics-Proteomics, 2010, 7(5): 261-277. |
[63] | 杨红霞, 高亚, 蒋恒波, 等. EGCG通过miR-33a上调ABCA1表达减少巨噬细胞脂质蓄积[J]. 2016, 39(9): 1279-1284. |
[64] | 江亚文. 动脉粥样硬化的研究进展[J]. 广东医学, 2003, 24(1): 88-90. |
[65] | Rose G, Shipley M. Plasma cholesterol concentration and death from coronary heart disease: 10 year results of the Whitehall study [J]. The British Medical Journal, 1986, 293(6542): 306-307. |
[66] | Yang T T C, Koo M W L. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion [J]. Life Sciences, 1999, 66(5): 411-423. |
[67] | Ikeda I, Kobayashi M, Hamada T, et al. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate [J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7303-7307. |
[68] | Xuan F, Jian J. Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux [J]. International journal of molecular medicine, 2016, 38(1): 328-336. |
[69] | Kajimoto O, Kajimoto Y, Yabune M, et al. Tea catechins reduce serum cholesterol levels in mild and borderline hypercholesterolemia patients [J]. Journal of Clinical Biochemistry and Nutrition, 2003, 33(3): 101-111. |
[70] | Tsubono Y, Tsugane S. Green tea intake in relation to serum lipid levels in middle-aged Japanese men and women [J]. Annals of Epidemiology, 1997, 7(4): 280-284. |
[71] | Tokunaga S, White I R, Frost C, et al. Green tea consumption and serum lipids and lipoproteins in a population of healthy workers in Japan [J]. Annals of Epidemiology, 2002, 12(3): 157-165. |
[72] | Wu A H, Spicer D, Stanczyk F Z, et al. Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormonal levels in healthy postmenopausal women [J]. Cancer Prevention Research, 2012, 5(3): 393-402. |
[73] | Ikeda I, Imasato Y, Sasaki E, et al. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats [J]. Biochimica et Biophysica Acta, 1992, 1127(2): 141-146. |
[74] | Imbe H, Sano H, Miyawaki M, et al. “Benifuuki” green tea, containing O-methylated EGCG, reduces serum low-density lipoprotein cholesterol and lectin-like oxidized low-density lipoprotein receptor-1 ligands containing apolipoprotein B: A double-blind, placebo-controlled randomized trial [J]. Journal of Functional Foods, 2016, 25: 25-37. |
[75] | Jin H H, Yang J L, Chung J H, et al. Hypocholesterolemic effects of green tea in cholesterol-fed rats [J]. Journal of the Korean Society of Food Science and Nutrition, 2004, 33(1): 47-51. |
[76] | Hsu T F, Kusumoto A, Abe K, et al. Polyphenol-enriched Oolong tea increases fecal lipid excretion [J]. European Journal of Clinical Nutrition, 2006, 60(11): 1330-1336. |
[77] | Muramatsu K, Fukuyo M, Hara Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats [J]. Journal of Nutritional Science and Vitaminology, 1986, 32(6): 613-622. |
[78] | Heidrich J E, Contos L M, Hunsaker L A, et al. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster [J]. BMC Pharmacology, 2004, 4(1): 5. https://doi.org/10.1186/1471-2210-4-5. |
[79] | Jeon S Y, Imm J Y. Lipase inhibition and cholesterol-lowering activities of laccase-catalyzed catechin polymers [J]. Food Science and Biotechnology, 2014, 23(5): 1703-1707. |
[80] | Nakai M, Fukui Y, Asami S, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro [J]. Journal of Agricultural and Food Chemistry, 2005, 53(11): 4593-4598. |
[81] | Morita S. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis [J]. Biological and Pharmaceutical Bulletin, 2016, 39(1): 1-24. |
[82] | Frijhoff J, Winyard P G, Zarkovic N, et al. Clinical relevance of biomarkers of oxidative stress [J]. Antioxidants & redox signaling, 2015, 23(14): 1144-1170. |
[83] | Steinberg D, Parthasarathy S, Carew T E, et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity [J]. The New England Journal of Medicine, 1989, 320(14): 915-924. |
[84] | Steinberg D. The LDL modification hypothesis of atherogenesis: an update [J]. Journal of Lipid Research, 2009, 50(Sup 1): S376-S381 |
[85] | Frei B, Gaziano J M. Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and-independent oxidation [J]. Journal of Lipid Research, 1993, 34(12): 2135-2145. |
[86] | Koo S I, Noh S K. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect [J]. The Journal of nutritional biochemistry, 2007, 18(3): 179-183. |
[87] | Chen G, Wang H, Zhang X, et al. Nutraceuticals and functional foods in the management of hyperlipidemia [J]. Critical reviews in food science and nutrition, 2014, 54(9): 1180-1201. |
[88] | Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial [J]. The American journal of clinical nutrition, 2013, 99(3): 463-471. |
[89] | Yao Z, Zhang L, Ji G. Efficacy of polyphenolic ingredients of Chinese herbs in treating dyslipidemia of metabolic syndromes [J]. Journal of integrative medicine, 2014, 12(3): 135-146. |
[90] | Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling [J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 1-15. http://dx.doi.org/10.1155/2015/504253. |
[91] | Sukhbold E, Sekimoto S, Watanabe E, et al. Effects of oolonghomobisflavan a on oxidation of low-density lipoprotein [J]. Bioscience, Biotechnology, and Biochemistry, 2017, 81(8): 1569-1575. |
[92] | Goto T, Saito Y, Morikawa K, et al. Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes [J]. British Journal of Nutrition, 2012, 107(6): 769-773. |
[93] | 刘波静. 茶多酚对动物血清血脂和载脂蛋白水平的影响和抗氧化作用[J]. 茶叶科学, 2000, 20(1): 67-70. |
[94] | Li P F, Dietz R, Von Harsdorf R. Reactive oxygen species induce apoptosis of vascular smooth muscle cell [J]. FEBS letters, 1997, 404(2/3): 249-252. |
[95] | Li P F, Dietz R, Von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells [J]. Circulation, 1997, 96(10): 3602-3609. |
[96] | Vacaresse N, Vieira O, Robbesyn F, et al. Phenolic antioxidants trolox and caffeic acid modulate the oxidized LDL‐induced EGF‐receptor activation [J]. British Journal of Pharmacology, 2001, 132(8): 1777-1788. |
[97] | Devika P T, Prince P S M. Preventive effect of (-) epigallocatechin-gallate (EGCG) on lysosomal enzymes in heart and subcellular fractions in isoproterenol-induced myocardial infarcted wistar rats [J]. Chemico-Biological Interactions, 2008, 172(3): 245-252. |
[98] | Singh B N, Shankar S, Srivastava R K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications [J]. Biochemical Pharmacology, 2011, 82(12): 1807-1821. |
[99] | Choi J S, Choi Y J, Shin S Y, et al. Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK-and JAK/STAT-signaling [J]. The Journal of Nutrition, 2008, 138(6): 983-990. |
[100] | Li H L, Huang Y, Zhang C N, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and-independent signal pathways [J]. Free Radical Biology and Medicine, 2006, 40(10): 1756-1775. |
[101] | Arai H, Berlett B S, Chock P B, et al. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10472-10477. |
[102] | Milde J, Elstner E F, Grassmann J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid [J]. Phytomedicine, 2004, 11(2/3): 105-113. |
[103] | Gutteridge J M. Lipid peroxidation and antioxidants as biomarkers of tissue damage [J]. Clinical Chemistry, 1995, 41(12): 1819-1828. |
[104] | Potapovich A I, Kostyuk V A. Comparative study of antioxidant properties and cytoprotective activity of flavonoids [J]. Biochemistry (Moscow), 2003, 68(5): 514-519. |
[105] | 赵秀兰, 宫爱华, 李建华, 等. 茶多酚抗动脉粥样硬化机制研究[J]. 中国公共卫生, 2003, 19(8): 930-931. |
[106] | Jayashree G V, Krupashree K, Rachitha P, et al. Patulin Induced Oxidative Stress Mediated Apoptotic Damage in Mice, and its Modulation by Green Tea Leaves [J]. Journal of Clinical and Experimental Hepatology, 2017, 7(2): 127-134. |
[107] | Zhu Q Y, Huang Y, Tsang D, et al. Regeneration of α-tocopherol in human low-density lipoprotein by green tea catechin [J]. Journal of Agricultural and Food Chemistry, 1999, 47(5): 2020-2025. |
[108] | Liu Z Q, Ma L P, Zhou B, et al. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein [J]. Chemistry and Physics of Lipids, 2000, 106(1): 53-63. |
[109] | Dimmeler S, Haendeler J, Zeiher A M. Regulation of endothelial cell apoptosis in atherothrombosis [J]. Current Opinion in Lipidology, 2002, 13(5): 531-536. |
[110] | Wintergerst E S, Jelk J, Rahner C, et al. Apoptosis induced by oxidized low density lipoprotein in human monocyte‐derived macrophages involves CD36 and activation of caspase-3 [J]. The FEBS Journal, 2000, 267(19): 6050-6059. |
[111] | Salvayre R, Auge N, Benoist H, et al. Oxidized low-density lipoprotein-induced apoptosis [J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2002, 1585(2): 213-221. |
[112] | Jeong Y J, Choi Y J, Kwon H M, et al. Differential inhibition of oxidized LDL-induced apoptosis in human endothelial cells treated with different flavonoids [J]. British Journal of Nutrition, 2005, 93(5): 581-591. |
[113] | Liu M L, Yu L C. Potential protection of green tea polyphenols against ultraviolet irradiation-induced injury on rat cortical neurons [J]. Neuroscience letters, 2008, 444(3): 236-239. |
[114] | Yan X, Li J. GW28-e0321 Epigallocatechin-3-gallate inhibits H2O2-induced apoptosis in Mouse Vascular Smooth Muscle Cells via 67 kD Laminin Receptor [J]. Journal of the American College of Cardiology, 2017, 70(Sup 16): C57-C58. DOI: 10.1016/j.jacc.2017.07.196. |
[115] | Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24(6): 998-1005. |
[116] | Vanhaesebroeck B, Leevers S J, Panayotou G, et al. Phosphoinositide 3-kinases: a conserved family of signal transducers [J]. Trends in Biochemical Sciences, 1997, 22(7): 267-272. |
[117] | Dimmeler S, Zeiher A M. Nitric oxide-an endothelial cell survival factor [J]. Cell death and differentiation, 1999, 6(10): 964-968. |
[118] | Jacob R A, Gretz D M, Taylor P C, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women [J]. The Journal of nutrition, 1998, 128(7): 1204-1212. |
[119] | Liu S, Sun Z, Chu P, et al. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways [J]. Apoptosis, 2017, 22(5): 672-680. |
[120] | 蔡宏文, 毛威. 动脉粥样硬化斑块内新生血管中西医治疗进展[J]. 中华中医药学刊, 2015, 33(5): 1168-1170. |
[121] | Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia [J]. Journal of Neuroscience, 2001, 21(19): 7724-7732. |
[122] | Park J W, Hong J S, Lee K S, et al. Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia [J]. The Journal of Nutritional Biochemistry, 2010, 21(11): 1038-1044. |
[123] | Cheng X W, Kuzuya M, Nakamura K, et al. Mechanisms of the inhibitory effect of epigallocatechin-3-gallate on cultured human vascular smooth muscle cell invasion [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25(9): 1864-1870. |
[124] | Bolduc V, Baraghis E, Duquette N, et al. Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr?/?: hApoB+/+ mice and improves cerebral blood flow [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2012, 302(6): H1330-H1339. |
[125] | Cheng X W, Kuzuya M, Sasaki T, et al. Green tea catechins inhibit neointimal hyperplasia in a rat carotid arterial injury model by TIMP-2 overexpression [J]. Cardiovascular Research, 2004, 62(3): 594-602. |
[126] | 王贤波, 成浩, 赵芸, 等. 茶叶中EGCG对小鼠抗凝血作用实验研究[J]. 茶叶科学, 2011, 31(6): 532-536. |
[127] | 房磊, 王捷熙, 刘敏霞, 等. 负载表没食子儿茶素没食子酸酯对血小板功能与凋亡等影响[J]. 中国实验血液学杂志, 2011, 19(3): 764-768. |
[128] | Kang W S, Lim I H, Yuk D Y, et al. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate [J]. Thrombosis research, 1999, 96(3): 229-237. |
[129] | Lill G, Voit S, Schr?r K, et al. Complex effects of different green tea catechins on human platelets [J]. Febs Letters, 2003, 546(2): 265-270. |
[130] | Ok W J, Cho H J, Kim H H, et al. Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner [J]. Journal of Atherosclerosis and Thrombosis, 2012, 19(4): 337-348. |
[131] | Chen X Q, Wang X B, Guan R F, et al. Blood anticoagulation and antiplatelet activity of green tea (-)-epigallocatechin (EGC) in mice [J]. Food & function, 2013, 4(10): 1521-1525. |
[132] | Choi J H, Chang H W, Rhee S J. Effect of green tea catechin on arachidonic acid cascade in chronic cadmium‐poisoned rats [J]. Asia Pacific journal of clinical nutrition, 2002, 11(4): 292-297. |
[133] | Steptoe A, Gibson E L, Vuononvirta R, et al. The effects of chronic tea intake on platelet activation and inflammation: a double-blind placebo controlled trial [J]. Atherosclerosis, 2007, 193(2): 277-282. |
[134] | Duffy S J, Vita J A, Holbrook M, et al. Effect of acute and chronic tea consumption on platelet aggregation in patients with coronary artery disease [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21(6): 1084-1089. |
[135] | Rashidi B, Malekzadeh M, Goodarzi M, et al. Green tea and its anti-angiogenesis effects [J]. Biomedicine & Pharmacotherapy, 2017, 89: 949-956. |
[136] | Jain R K, Finn A V, Kolodgie F D, et al. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization [J]. Nature Reviews Cardiology, 2007, 4(9): 491-502. |
[137] | Ahn H Y, Hadizadeh K R, Seul C, et al. Epigallocathechin-3 gallate selectively inhibits the PDGF-BB–induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation ofsis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172) [J]. Molecular Biology of the Cell, 1999, 10(4): 1093-1104. |
[138] | Lin C M, Hou S W, Wang B W, et al. Molecular mechanism of (-)-epigallocatechin-3-gallate on balloon injury-induced neointimal formation and leptin expression [J]. Journal of Agricultural and Food Chemistry, 2014, 62(6): 1213-1220. |
[139] | Hofmann C S, Sonenshein G E. Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53 [J]. The FASEB Journal, 2003, 17(6): 702-704. |
[140] | Kavantzas N, Chatziioannou A, Yanni A E, et al. Effect of green tea on angiogenesis and severity of atherosclerosis in cholesterol-fed rabbit [J]. Vascular Pharmacology, 2006, 44(6): 461-463. |
[1] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[2] | 周少锋, 乾云菲, 赵真, 陈暄, 黎星辉. 不同发酵程度茶叶对茶垢形成的影响[J]. 茶叶科学, 2022, 42(1): 76-86. |
[3] | 吴鑫, 宋飞虎, 裴永胜, 朱冠宇, 姜乐兵, 宁文楷, 李臻峰, 刘本英. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
[4] | 王盛琳, 杨崇山, 刘中原, 柳善建, 董春旺. 基于电特性的红茶发酵中茶多酚含量快速检测方法[J]. 茶叶科学, 2021, 41(2): 251-260. |
[5] | 曾洁, 邓志慧, 付红娟, 刘畅, 古仪, 邹奕昕, 常徽. 茶黄素激活Nrf2/HO-1通路保护血管内皮细胞氧化应激损伤[J]. 茶叶科学, 2020, 40(5): 632-640. |
[6] | 卢莉, 程曦, 张渤, 沈小霞, 刘艳, 熊丽, 袁潇, 李远华, 黎星辉. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. |
[7] | 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14. |
[8] | 周方, 欧阳建, 黄建安, 刘仲华. 茶多酚对肠道微生物的调节作用研究进展[J]. 茶叶科学, 2019, 39(6): 619-630. |
[9] | 祝琳, 吴龙, 陈小强, 陈学玲, 吴正奇, 石勇. 茶多酚与多糖的相互作用:作用机理及功能特性变化研究进展[J]. 茶叶科学, 2019, 39(2): 203-210. |
[10] | 吴根梁, 侯爱香, 李珂, 李宗军. 陈年茯砖茶多酚类对老年人肠道菌群的影响研究[J]. 茶叶科学, 2018, 38(3): 319-330. |
[11] | 史春麟, 李晓焕, 黄翔翔. 绿茶多酚对被动吸烟引起小鼠肺氧化应激的干预研究[J]. 茶叶科学, 2018, 38(2): 212-220. |
[12] | 宋娟, 王栋, 于绪东. 茶多酚乳胶剂的研制及稳定性考察[J]. 茶叶科学, 2017, 37(6): 623-630. |
[13] | 雷丽萍, 朱跃骅, 张剑, 杨文鸽, 李普友, 刘艳杰, 钱云霞. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531. |
[14] | 赵文红, 崔慧娴, 孙倩男, 陈兵兵. 茶多酚对直链烷基苯磺酸钠致小鼠皮肤损伤的保护作用[J]. 茶叶科学, 2016, 36(5): 461-468. |
[15] | 魏然, 徐平, 应乐, 王岳飞. 茶多酚对阿尔茨海默病的防治功能与机理研究进展[J]. 茶叶科学, 2016, 36(1): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|