[1] |
Ma J F, Chen Z C, Shen R F.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant and Soil, 2014, 381(1/2): 1-12.
|
[2] |
Hajiboland R, Rad S B, Barcelo J, Poschenrieder C.Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(4): 616-625.
|
[3] |
王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 337-346.
|
[4] |
Morita A, Yanagisawa O, Maeda S, et al.Tea plant(Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Journal of Soil Science and Plant Nutrition, 2011(57): 796-802.
|
[5] |
刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462.
|
[6] |
疏再发. 根系有机酸和细胞壁果胶甲酯化参与茶树耐铝/解铝毒机制的研究[D]. 南京: 南京农业大学, 2016: 30-31.
|
[7] |
Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017, 119: 265-274.
|
[8] |
Tolrà R, Vogel-Miku K, Hajiboland R, et al.Localization of aluminium in tea ( Camellia sinensis ) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172.
|
[9] |
Hajiboland R, Poschenrieder C.Localization and compartmentation of Al in the leaves and roots of tea plants[J]. Phyton, 2015, 84(1): 86-100.
|
[10] |
Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319.
|
[11] |
Panda S K, Sahoo L, Katsuhara M, et al.Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells[J]. Molecular Biotechnology, 2013, 54(2): 551-563.
|
[12] |
Larsen P B, Geisler M J, Jones C A, et al.ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. The Plant Journal, 2005, 41(3): 353-363.
|
[13] |
Larsen P B, Cancel J, Rounds M, et al.Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment[J]. Planta, 2007, 225(6): 1447-1458.
|
[14] |
Arenhart R A, Bai Y, Oliveira L F, et al.New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes[J]. Molecular Plant, 2014, 7(4): 709-721.
|
[15] |
Yokosho K, Yamaji N, Ma J F.Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench)[J]. Plant and Cell Physiology. 2014, 55(12): 2077-2091.
|
[16] |
Chen H, Lu C P, Jiang H, et al.Global transcriptome analysis reveals distinct aluminum-tolerance pathways in the Al-accumulating species Hydrangea macrophylla and marker identification[J]. PLoS One, 2015, 10(12): e0144927. DOI: 10.1371/journal.pone.0144927.
|
[17] |
Kobayashi Y, Hoekenga O A, Itoh H, et al.Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis[J]. Plant Physiology, 2007, 145(3): 843-852.
|
[18] |
Liu J, Jurandir V, Magalhaes J V, et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. The Plant Journal. 2009, 57(3): 389-399.
|
[19] |
Yamaji N, Huang C F, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(10): 3339-3349.
|
[20] |
Sawaki Y, Iuchi S, Kobayashi Y, et al.STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology[J]. 2009, 150(1): 281-294.
|
[21] |
Sawaki Y, Kobayashia Y, Kihara-Doic T, et al.Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes[J]. Plant Science, 2014, 223: 8-15.
|
[22] |
Huang C F, Yamaji N, Mitani N, et al.A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(2): 655-667.
|
[23] |
Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017, 115: 141-151.
|
[24] |
Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246(1): 91-103.
|
[25] |
Zhao H, Huang W, Zhang Y G, et al.Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance[J]. Plant and Soil, 2018, 431(1/2): 71-87.
|
[26] |
Fan K, Wang M, Gao Y, et al.Transcriptomic and ionomic analysis provides new insight into the beneficial effect of al on tea roots’ growth and nutrient uptake[J]. Plant Cell Reports, 2019, 38(6): 715-729.
|
[27] |
宁秋燕. 茶树根系中XTHs和Expansins对不同浓度铝的响应研究[D]. 北京: 中国农业科学院研究生院, 2018: 29-31.
|
[28] |
曹红利. 茶树bZIP家族基因的非生物胁迫响应及C亚家族CsbZIP6和CsbZIP4的功能初步分析[D]. 北京: 中国农业科学院研究生院, 2016: 16-17.
|
[29] |
Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci USA, 2018, 115(18): 4151-4158.
|
[30] |
Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628.
|
[31] |
Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-39-5-506/img_1.wmf"/> Method[J]. Methods, 2001, 25(4): 402-408.
|
[32] |
Mukhopadyay M, Bantawa P, Das A, et al.Changes of growth, photosynthesis and alteration of leaf antioxidative defense system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25(6): 1141-1154.
|
[33] |
Li C L, Xu H M, Xu J, et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J]. Acta Physiologiae Plantarum, 2011, 33(3): 973-978.
|
[34] |
Richards K D, Schott E J, Sharma Y K, et al.Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiology, 1998, 116(1): 409-418.
|
[35] |
Chowra U, Yanase E, Koyama H, et al.Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper[J]. Protoplasma, 2017, 254(1): 293-302.
|
[36] |
Ezaki B, Gardner R C, Ezaki Y, et al.Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress[J]. Plant Physiology, 2000, 122(3): 657-665.
|
[37] |
李勇. 茶树响应铝的遗传变异及铝富集候选基因挖掘[D]. 武汉: 华中农业大学, 2017: 36.
|
[38] |
You J F, Zhang H M, Liu N, et al.Transcriptomic responses to aluminum stress in soybean roots[J]. Genome, 2011, 54(11): 923-933.
|
[39] |
Guo P, Qi Y P, Yang L T, et al.Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance[J]. Front in Plant Science, 2017, 8: 330. DOI: 10.3389/fpls.2017.00330.
|
[40] |
王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J].植物生理学报, 2017, 53(2): 133-144.
|
[41] |
Li J Y, Liu J, Dong D, et al.Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance[J]. Proc Natl Acad Sci USA, 2014, 111(17): 6503-6508.
|
[42] |
Zhang H, Tan Z Q, Hu L Y, et al.Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings[J]. Journal of Integrative Plant Biology, 2010, 52(6): 556-567.
|
[43] |
Dawood M, Cao F, Jahangir M M, et al. Alleviation of aluminum toxicity by hadrogen suilfide is related to elevated ATPase,suppressed aluminum uptake and oxidative stress in barley [J]. Journal of Hazardous Materials, 2012, 209/210: 121-128.
|
[44] |
Guo P, Li Q, Qi Y P, et al.Sulfur-Mediated-Alleviation of Aluminum-Toxicity in Citrus grandis seedlings[J]. International Journal of Molecular Sciences, 2017, 18(12): 2570. DOI: 10.3390/ijms18122570.
|
[45] |
Negishi T, Oshima K, Hattori M, et al.Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue Hydrangea Sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7(8): e43189. DOI: 10.1371/journal.pone.0043189.
|
[46] |
范伟, 娄和强, 龚育龙, 等. 调控铝诱导根尖有机酸分泌的分子机制[J]. 植物生理学报, 2014, 50(10): 1469-1478.
|
[47] |
Chen L, Song Y, Li S, et al.The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 120-128.
|
[48] |
Kumari M, Taylor G J, Deyholos K.Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2008, 279(4): 339-357.
|
[49] |
Goodwin S B, Sutter T R.Microarray analysis of Arabidopsis genome response to aluminum stress[J]. Biologia Plantarum, 2009, 53(1): 85-99.
|
[50] |
Ding Z J, Yan J Y, Xu X Y, et al. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum induced malate secretion in Arabidopsis[J]. The Plant Journal, 2013, 76(5): 825-835.
|
[51] |
Horst W J, Wang Y, Eticha D.The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review[J]. Annals of Botany, 2010, 106(1): 185-197.
|
[52] |
Teraoka T, Kaneko M, Mori S, et al.Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings[J]. Journal of Plant Physiology, 2002, 159(1): 17-23.
|
[53] |
Tabuchi A1, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J]. Physiology Plant, 2001, 112(3): 353-358.
|
[54] |
Potter I, Fry S C.Changes in xyloglucan endotransglycosylase (XET) activity during hormone-induced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures[J]. Journal of Experimental Botany, 1994, 45: 1703-1710.
|
[55] |
Chandran D, Sharopova N, Ivashuta S, et al.Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula[J]. Planta, 2008, 228(1): 151-166.
|
[56] |
Yang J L, Zhu X F, Peng Y X, et al.Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J]. Plant Physiology. 2011, 155(4): 1885-1892.
|