[1] |
Jiang H B, Michael R Kanost.The clip-domain family of serine proteinases in arthropods[J]. Insect Biochemistry and Molecular Biology, 2000, 30(2): 95-105.
|
[2] |
Srinivasan A, Giri A P, Gupta V S.Structural and functional diversities in lepidopteran serine proteases[J]. Cell Mol Biol Lett, 2006, 11(1): 132-154.
|
[3] |
Jeremy Rossa, Michael R Kanostb, Wang Y.Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships[J]. Gene, 2003, 304: 117-131.
|
[4] |
Veillard F, Troxler L, Reichhart J M.Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation[J]. Biochimie, 2016, 122: 255-269.
|
[5] |
Colebatch G, Cooper P, East P. cDNA cloning of a salivary chymotrypsin-like protease and the identification of six additional cDNAs encoding putative digestive proteases from the green mirid, Creontiadesdilutus (Hemiptera: Miridae)[J]. Insect Biochemistry and Molecular Biology, 2002, 32(9): 1065-1075.
|
[6] |
王镜岩, 朱圣庚, 徐长发. 生物化学[M]. 第三版. 北京: 高等教育出版社, 2002: 405.
|
[7] |
Joseph Kraut.Serine proteases: Structure and mechanism of catalysis[J]. Ann. Rev. Biochem, 1977, 46: 331-358.
|
[8] |
Page M J, Cera E Di.Serine peptidases: classification, structure and function[J]. Cell Mol Life Sci, 2008. 65(7/8): 1220-1236.
|
[9] |
Hedstrom L.Serine Protease Mechanism and Specificity[J]. Chemical Reviews, 2002, 102(12): 4501-4523.
|
[10] |
Lomate, P R, Mahajan N S, Kale, et al. Identification and expression profiling of Helicoverpa armigera microRNAs and their possible role in the regulation of digestive protease genes[J]. Insect Biochem Mol Biol, 2014, 54: 129-137.
|
[11] |
Anisuzzaman, Islam M K, Alim M A, et al. Longistatin is an unconventional serine protease and induces protective immunity against tick infestation[J]. Mol Biochem Parasitol, 2012, 182(1/2): 45-53.
|
[12] |
Srinivasan A, Ashok P Giri1, Abhay M Harsulkar, et al. A Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpa armigera) larvae[J]. Plant Mol Biol, 2005, 57(3): 359-374.
|
[13] |
李莉莉, 周晓群, 赵奎军, 等. 苜蓿夜蛾丝氨酸蛋白酶基因cDNA序列的克隆与原核表达研究[J]. 应用昆虫学报, 2016, 53(4): 706-715.
|
[14] |
周晓群, 高艳玲, 赵奎军, 等. 苜蓿夜蛾中肠丝氨酸蛋白酶cDNA 的克隆、序列分析及原核表达[J]. 昆虫学报, 2014, 57(9): 1008-1017.
|
[15] |
Broehan G, Kemper M, Driemeier D, et al.Cloning and expression analysis of midgut chymotrypsin-like proteinases in the tobacco hornworm[J]. J Insect Physiol, 2008, 54(8): 1243-1252.
|
[16] |
Zhang C, Zhou D H, Zheng S C, et al.A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura: Cloning, characterization, developmental and induced expression patterns, and localization[J]. J Insect Physiol, 2010, 56(7): 788-799.
|
[17] |
冯一璐, 傅晓斌, 吴帆, 等. 茶尺蠖信息素结合蛋白PBP2的基因克隆、原核表达及其结合功能[J]. 中国农业科学, 2017, 50(3): 504-512.
|
[18] |
赵旭东, 孙宇航, 陈昌宇, 等. 美国白蛾丝氨酸蛋白酶基因HcSP1的克隆、时空表达及对取食不同寄主植物的表达响应[J]. 昆虫学报, 2019, 62(2): 160-169.
|
[19] |
Wang R X, Tong X L, Gai T T, et al.A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm[J]. Insect Mol Biol, 2018, 27(3): 319-332.
|
[20] |
张永红, 朱峰, 唐芬芬, 等. 家蚕丝氨酸蛋白酶基因BmSP25转录分析及其免疫响应[J]. 南方农业学报, 2017, 48(6): 1093-1098.
|
[21] |
Liu Q Y, Li M G, Liu X F, et al.Characterization of trypsin-like and chymotrypsin-like serine proteases from midgut of Mythimna separata Walker[J]. Arch Insect Biochem Physiol, 2016, 92(3): 173-191.
|
[22] |
Fan L M, Rui X R, Yang L, et al.RNA interference mediated serine protease gene (Spbtry1) knockdown affects growth and mortality in the soybean pod borer (Lepidoptera: Olethreutid)[J]. Florida Entomologist, 2017, 100(3): 607-615.
|
[23] |
Tamhane V A, Chougule N P, Giri A P, et al.In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases[J]. Biochimica Et Biophysica Acta-General Subjects, 2005, 1722(2): 156-167.
|
[24] |
Yang Z W, Duan X N, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751.
|
[25] |
Huang C, Zhang J, Zhang X, et al.Two new polyphenol oxidase genes of tea plant (Camellia sinensis) respond differentially to the regurgitant of tea geometrid, Ectropis obliqua[J]. Int J Mol Sci, 2018, 19(8): 2414. DOI: 10.3390/ijms19082414.
|
[26] |
Sun X L, Li X W, Xin Z J, et al.Development of synthetic volatile attractant for male Ectropis oblique moths[J]. Journal of Integrative Agriculture, 2016, 15(7): 1532-1539.
|
[27] |
Gorman M J, Kankanala P, Kanost M R.Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs[J]. Insect Molecular Biology, 2004, 13(1): 19-24.
|
[28] |
张娴, 李超林, 郑乔木, 等. 菜青虫胰凝乳蛋白酶基因PrCT1的克隆及表达分析[J]. 河南农业科学, 2019, 48(9): 74-81.
|
[29] |
Chen C X, Yan Y, Yang H, et al.Cloning of two clip-domain serine protease genes and their expression in response to exogenous hormone and immune challenge in Lasioderma serricorne (Coleoptera: Anobiidae)[J]. Acta Entomologica Sinica, 2019, 62(5): 535-546.
|
[30] |
He W Y, Zheng Y P, Tang L, et al.Cloning, expression and localization of a trypsin-like serine protease in the spruce budworm, Choristoneura fumiferana[J]. Insect Science, 2009, 16(6): 455-464.
|
[31] |
Zhan Q L, Zheng S C, Feng Q L, et al.A midgut-specific chymotrypsin cDNA (Slctlp1) from Spodoptera litura: cloning, characterization, localization and expression analysis[J]. Arch Insect Biochem Physiol, 2011, 76(3): 130-143.
|
[32] |
Shi M, Zhu N, Yi Y, et al.Four serine protease cDNAs from the midgut of Plutella xylostella and their proteinase activity are influenced by the endoparasitoid, cotesia vestalis[J]. Arch Insect BiochemPhysiol, 2013, 83(2): 101-114.
|
[33] |
高旭晖, 宛晓春, 杨云秋, 等. 茶尺蠖生物学习性研究[J]. 植物保护, 2007, 33(3): 110-113.
|
[34] |
郭萧, 王晓庆, 彭萍, 等. 茶树不同成熟度叶片对茶尺蠖发育适合度的影响[J]. 茶叶科学, 2012, 32(3): 229-235.
|
[35] |
Fang R, Sally P Redfern, Don Kirkup, et al.Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons[J]. Food Chemistry, 2017, 220: 517-526.
|