茶叶科学 ›› 2019, Vol. 39 ›› Issue (6): 731-741.doi: 10.13305/j.cnki.jts.2019.06.012
牛司耘, 倪康, 赵晨光, 马立锋*, 阮建云
收稿日期:
2019-05-07
修回日期:
2019-09-07
出版日期:
2019-12-15
发布日期:
2019-12-24
通讯作者:
* malf@tricaas.com
作者简介:
牛司耘,女,硕士研究生,主要从事茶园土壤养分方面的研究。
基金资助:
NIU Siyun, NI Kang, ZHAO Chenguang, MA Lifeng*, RUAN Jianyun
Received:
2019-05-07
Revised:
2019-09-07
Online:
2019-12-15
Published:
2019-12-24
摘要: 为明确我国茶园土壤硝化潜势及其主要影响因素,本研究采集了我国亚热带地区12个省份的30份代表性茶园土壤,通过悬浮液培养法对土壤硝化潜势进行了研究,并利用多元回归和偏最小二乘回归(PLS)等统计分析方法,明确了影响其变化的主效应因子。结果显示,茶园土壤硝化潜势在0.24~5.31 mg·kg-1·h-1之间;土壤氨氧化古菌(AOA)与氨氧化细菌(AOB)均与土壤硝化潜势具有显著正相关性。PLS分析显示,AOA、AOB、碳氮比、硝态氮、铵态氮、全氮、有机碳含量是影响土壤硝化潜势差异的关键因子,相对重要性大小依次降低。上述结果表明酸性茶园土壤仍然具有较强的硝化潜势,AOA可能是酸性茶园土壤氨氧化过程的主导微生物,而因气候、土壤、栽培方式不同所导致的氨氧化微生物、土壤碳氮有效性高低可能是导致茶园土壤硝化潜势差异的主要原因。
中图分类号:
牛司耘, 倪康, 赵晨光, 马立锋, 阮建云. 不同地区茶园土壤硝化潜势特征研究[J]. 茶叶科学, 2019, 39(6): 731-741. doi: 10.13305/j.cnki.jts.2019.06.012.
NIU Siyun, NI Kang, ZHAO Chenguang, MA Lifeng, RUAN Jianyun. Characteristics of Soil Nitrification Potential in Different Tea Gardens of China[J]. Journal of Tea Science, 2019, 39(6): 731-741. doi: 10.13305/j.cnki.jts.2019.06.012.
[1] | 朱仲海. 世界茶贸易趋于平缓[J]. 中国投资, 2018(9): 40-43. |
[2] | 韩文炎, 李强. 茶园施肥现状与无公害茶园高效施肥技术[J]. 中国茶叶, 2002(6): 29-31. |
[3] | Shen J, Yong L I, Liu X, et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J]. Atmospheric Environment, 2013, 67(2): 415-424. |
[4] | Ye C, Cheng X, Zhang K, et al.Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone[J]. Soil Biology & Biochemistry, 2017, 115: 137-147. |
[5] | 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005. |
[6] | Wde B, Kowalchuk G A.Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology & Biochemistry, 2001, 33(7): 853-866. |
[7] | 范晓晖, 朱兆良. 旱地土壤中的硝化—反硝化作用[J]. 土壤通报, 2002, 33(5): 385-391. |
[8] | 王帘里, 孙波. 培养温度和土壤类型对土壤硝化特性的影响[J]. 土壤学报, 2011, 48(6): 1173-1179. |
[9] | Laverman A M.Temporal and spatial variation of nitrogen transformations in a coniferous forest soil[J]. Soil Biology & Biochemistry, 2000, 32(11): 1661-1670. |
[10] | 王峰, 陈玉真, 尤志明, 等. 不同施氮量对两种茶园土壤硝化作用和pH值的影响[J]. 茶叶科学, 2015, 35(1): 82-90. |
[11] | Chu H Y, Fuji T, Morimoto S, et al.Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. Applied and Environmental Microbiology, 2007, 73(2): 485-491. |
[12] | Ai C, Liang G Q, Sun J W, et al.Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia-oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology & Biochemistry, 2013, 57(3): 30-42. |
[13] | Robertson G P, Fisk J W, Paul E A.Seasonal changes in nitrification potential associated with application of N fertilizer and compost in maize systems of southwest Michigan[J]. Agriculture, Ecosystems & Environment, 2003, 97: 285-293. |
[14] | Xue D, Gao Y M, Yao H Y, et al.Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils[J]. Journal of Environmental Sciences, 2009, 21(9): 1225-1229. |
[15] | Yao H Y, Gao Y M, Nicol Graeme W, et al.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625. |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] | Pester M, Rattei T, Flechl S, et al.AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2): 525-539. |
[18] | Hart S C, Stark J M, Davidson E A, et al.Nitrogen mineralization, immobilization, and nitrification[J]. Methods of soil analysis: part 2—microbiological and biochemical properties, 1994(methodsofsoilan2): 985-1018. |
[19] | Rotthauwe J H, Witzel K P, Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied & Environmental Microbiology, 1997, 63(12): 4704-4712. |
[20] | Schaffer A.Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements[J]. Nucleic Acids Research, 2001, 29(14): 2994-3005. |
[21] | 刘国旗. 多重共线性的产生原因及其诊断处理[J]. 合肥工业大学学报(自然科学版), 2001(4): 607-610. |
[22] | 王惠文, 朱韵华. PLS回归在消除多重共线性中的作用[J]. 数理统计与管理, 1996(6): 48-52. |
[23] | 罗批, 郭继昌, 李锵, 等. 基于偏最小二乘回归建模的探讨[J]. 天津大学学报, 2002(6): 783-786. |
[24] | 张政, 冯国双. 变量投影重要性分析在自变量筛选中的应用[J]. 现代预防医学, 2012, 39(22): 5813-5815. |
[25] | 朱洵, 荣起国. 基于偏最小二乘回归的基因网络数学建模[J]. 系统仿真学报, 2009, 21(4): 1148-1154. |
[26] | 王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006. |
[27] | Malhi S S, Mcgill W B.Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration[J]. Soil Biology & Biochemistry, 1982, 14(4): 393-399. |
[28] | 艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D]. 北京: 中国农业科学院, 2015. |
[29] | 金兰淑, 郑佳, 徐慧, 等. 施氮及灌溉方式对玉米地土壤硝化潜势及微生物量碳的影响[J]. 水土保持学报, 2009, 23(4): 218-220, 226. |
[30] | Ouyang Y, Norton J M, Stark J M, et al.Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology & Biochemistry, 2016, 96: 4-15. |
[31] | Guo J, Ling N, Chen H, et al.Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment[J]. Soil Biology & Biochemistry, 2017, 115(1): 403-414. |
[32] | 段然. 施肥方式对稻田氮素转化的影响及其微生物学机制[D]. 北京: 中国农业科学院, 2018. |
[33] | 王萍萍, 段英华, 徐明岗, 等. 不同肥力潮土硝化潜势及其影响因素[J]. 土壤学报, 2019, 56(1): 124-134. |
[34] | 张苗苗, 王伯仁, 李冬初, 等. 长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响[J]. 生态学报, 2014, 35(19): 6362-6370. |
[35] | Dorthe G, Mary K.Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil[J]. FEMS Microbiology Ecology, 2013, 85(1): 179-194. |
[36] | 张青山, 欧阳运东, 肖孔操, 等. 喀斯特峰丛洼地植被恢复对土壤硝化与反硝化潜势的影响[J]. 农业现代化研究, 2018, 39(3): 520-526. |
[37] | 郭志英, 贾仲君. 中国典型生态系统土壤硝化强度的整合分析[J]. 土壤学报, 2014, 51(6): 1317-1324. |
[38] | Claysjosser A, Lensi R, Gourbiere F.Vertical distribution of nitrification potential in an acid forest soil[J]. Soil Biology & Biochemistry, 1988, 20(3): 405-406. |
[39] | 路璐, 何燕. 不同林分土壤中氨氧化微生物的群落结构和硝化潜势差异及其驱动因子[J]. 南方农业学报, 2018, 49(11): 2169-2176. |
[40] | Dancer W S, Peterson L A, Chesters G.Ammonification and nitrification of N influenced by soil pH and previous N treatments[J]. Soil Science Society of America Journal, 1973, 37(1): 67-69. |
[41] | 韩文炎. 茶园土壤微生物量、硝化和反硝化作用研究[D]. 杭州: 浙江大学, 2012. |
[42] | 贺纪正, 沈菊培, 张丽梅. 土壤硝化作用的新机理—氨氧化古菌在酸性土壤氨氧化中的主导作用[J]. 科学观察, 2012, 7(6): 58-60. |
[43] | He J Z, Hu H W, Zhang L M.Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology & Biochemistry, 2012, 55(1): 146-154. |
[44] | Verhamme D T, Prosser J I, Nicol G W.Ammonia concentration determines differential growth of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6): 1067-1071. |
[45] | Ying J Y, Zhang L M, He J Z.Putative ammonia-oxidizing bacteria and archaea in an acid red soil with different land utilization patterns[J]. Environmental Microbiology Reports, 2010, 2(2): 304-312. |
[46] | Yao H, Gao Y, Nicol G W, et al.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625. |
[47] | Shen W, Lin X, Gao N, et al.Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant & Soil, 2008, 306(1/2): 117-127. |
[48] | Rui Tao, Steven A.Wakelin, Liang Y C, et al. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification[J]. Soil Biology & Biochemistry, 2017, 114(1): 20-23. |
[49] | Di H J, Cameron K C, Hen J P, et al.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009(9): 621-624. |
[50] | Ingalls A E.Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6442-6447. |
[51] | 刘强. 有机碳对硝化作用及其菌群结构的影响[D]. 成都: 四川大学, 2007. |
[52] | 刘强, 李大平, 胡杰, 等. 不同有机碳与无机氨氮比(C/N)下自养硝化生物膜上微生物菌群的变化[J]. 四川大学学报(自然科学版), 2008, 45(3): 663-668. |
[53] | 程谊, 张金波, 蔡祖聪. 土壤中无机氮的微生物同化和非生物固定作用研究进展[J]. 土壤学报, 2012, 49(5): 1030-1036. |
[54] | Booth M S, Stark J M, Rastetter E.Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75(2): 139-157. |
[55] | Burger M, Jackson L E.Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems[J]. Soil Biology & Biochemistry, 2003, 35(1): 29-36. |
[56] | Vitousek P M, Matson P A.Mechanisms of nitrogen retention in forest ecosystems: a field experiment[J]. Science, 1984, 255(1): 51-52. |
[57] | Dail D B, Davidson E A, Chorover J.Rapid abiotic transformation of nitrate in an acid forest soil[J]. Biogeochemistry, 2001, 54(1): 131-146. |
[58] | Perakis S S, Hedin L O.Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, Southern Chile[J]. Ecology, 2001, 82(1): 2245-2260. |
[59] | Davidson E A, Chorover J, Dail D B.A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis[J]. Global Change Biology, 2003, 9(1): 228-236. |
[60] | Zak D R, Groffman P M, Pregitzer K S, et al.The Vernal Dam: plant-microbe competition for nitrogen in northern hardwood forests[J]. Ecology, 1990, 71(1): 651-656. |
[61] | Davidson E A, Stark J M, Firestone M K.Microbial production and consumption of nitrate in an annual grassland[J]. Ecology, 1990, 71(1): 1968-1975. |
[62] | Corre M D, Dechert G, Veldkamp E.Soil nitrogen cycling following montane forest conversion in central Sulawesi, Indonesia[J]. Soil Science Society of America Journal, 2006, 70(2): 359-366. |
[1] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[2] | 王峰, 单睿阳, 陈玉真, 林栋良, 臧春荣, 陈常颂, 尤志明, 余文权. 闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究[J]. 茶叶科学, 2018, 38(5): 537-546. |
[3] | 王利民, 黄东风, 李清华, 何春梅, 张辉, 刘彩玲, 栗方亮, 黄毅斌. 不同培肥方式对茶园土壤团聚体中有机碳和全氮分布的影响[J]. 茶叶科学, 2018, 38(4): 342-352. |
[4] | 谢珊妮, 宗良纲, 张琪惠, 戴荣波, 潘含岳, 原强. 3种改良剂对强酸性高硒茶园土壤硒有效性调控效果与机理[J]. 茶叶科学, 2017, 37(3): 299-307. |
[5] | 王峰, 陈玉真, 吴志丹, 江福英, 张文锦, 翁伯琦, 尤志明. 施用生物质炭对酸性茶园土壤氨挥发的影响[J]. 茶叶科学, 2017, 37(1): 60-70. |
[6] | 罗毅, 苏有健, 张永利, 夏先江, 宋莉, 王烨军, 廖万有. 茶园芽孢杆菌QM7促生特性及耐酸铝机制初步研究[J]. 茶叶科学, 2016, 36(6): 567-574. |
[7] | 唐劲驰, 周波, 黎健龙, 唐颢, 操君喜. 蚯蚓生物有机培肥技术(FBO)对茶园土壤微生物特征及酶活性的影响[J]. 茶叶科学, 2016, 36(1): 45-51. |
[8] | 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015, 35(2): 110-120. |
[9] | 王峰, 陈玉真, 尤志明, 吴志丹, 江福英, 张文锦, 翁伯琦. 不同施氮量对两种茶园土壤硝化作用和pH值的影响[J]. 茶叶科学, 2015, 35(1): 82-90. |
[10] | 韩晓阳, 李智, 张丽霞, 黄晓琴. 茶园土壤高活性固氮菌的筛选鉴定及接种效果初步研究[J]. 茶叶科学, 2014, 34(5): 497-505. |
[11] | 王晟强, 郑子成, 李廷轩. 应用Le Bissonnais法研究茶园土壤团聚体稳定性[J]. 茶叶科学, 2014, 34(3): 307-314. |
[12] | 谢少华, 宗良纲, 褚慧, 汪张懿, 邱晓蕾, 马爱军, 何任红. 不同类型生物质材料对酸化茶园土壤的改良效果[J]. 茶叶科学, 2013, 33(3): 279-288. |
[13] | 韩晓阳, 李智, 汪强强, 张丽霞. 茶园土壤高活性氨化菌的筛选鉴定及特性研究[J]. 茶叶科学, 2013, 33(1): 91-98. |
[14] | 潘明安, 张锡洲, 王永东, 李廷轩. 不同尺度下低山丘陵区茶园土壤钾素含量变异与制图[J]. 茶叶科学, 2010, 30(3): 177-183. |
[15] | 林衣东, 韩文炎. 不同土壤N2O排放的研究[J]. 茶叶科学, 2009, 29(6): 456-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|