[1] Guo M, Pan Y M, Dai Y L, et al.First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui province, China.[J] Plant Disease, 2014, 98(2): 284. doi: 10.1094/PDIS-08-13-0896-PDN. [2] Wang Y C, Hao X Y, Wang L, et al.Diverse Colletotrichum species cause anthracnose of tea plants(Camellia sinensis, 2016(6): 35287. doi: 10.1038/srep35287. [3] Yoshida K, Takeda Y.Evaluation of anthracnose resistance among tea genetic resources by wound-inoculation assay[J]. Japan Agricultural Research Quarterly, 2006, 40(4): 379-386. [4] 钱韦, 方荣祥, 何祖华. 植物免疫与作物抗病分子育种的重大理论基础——进展与设想[J]. 中国基础科学, 2016, 2: 38-45. Qian W, Fang R X, He Z H.Plant immunity and molecular basis for designing new crop varieties for disease resistance:Pro-gress and prospective[J]. China Basic Science, 2016, 2: 38-45. [5] 杨光道. 油茶品种对炭疽病酶活性的生理生化抗性研究[J]. 安徽农业学报, 2011, 17(9): 19-22. Yang G D.Resistance mechanism of oil tea tree cultivars to Colletotrichum Gloeosporioides[J]. Anhui Agricultural Science Bulletin, 2011, 17(9): 19-22. [6] 王玉春. 中国茶树炭疽菌系统发育学研究及茶树咖啡碱抗炭疽病的作用[D]. 杨凌: 西北农林科技大学, 2016. Wang Y C.Phylogenetics of Colletotrichum species isolated from Camellia sinensis in China and effects of caffeine in tea plant resistance to anthracnose [D]. Yangling: Northwest A&F University, 2016. [7] 赖建东, 魏日凤, 连玲丽, 等. 炭疽病病原菌侵染对茶树叶片生理特性的影响[J]. 福建农林大学学报(自然科学版), 2016, 45(2): 162-168. Lai J D, Wei R F, Lian L L, et al.Changes in physiological properties of tea leaf infected by Colletotrichum kahawae[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2016, 45(2): 162-168. [8] 张岗, 董艳玲, 夏宁, 等. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J]. 作物学报, 2010, 36(3): 401-409. Zhang G, Dong Y L, Xia N, et al.cDNA-AFLP analysis reveals differential gene expression in wheat adult-plant resistance to stripe rust[J]. Acta Agronomica Sinica, 2010, 36(3): 401-409. [9] 贺俐, 徐波, 黄子君, 等. 疫霉侵染辣椒基因差异表达的cDNA-AFLP分析[J]. 植物生理学报, 2015, 51(4): 546-552. He L, Xu B, Huang Z J, et al.cDNA-AFLP analysis of differentially expressed genes in pepper infected by Phytophthora capsici[J]. Plant Physiology Communications, 2015, 51(4): 546-552. [10] 康红卫, 史卫东, 罗海玲, 等. 菜心抗虫性的cDNA-AFLP分析[J]. 西南农业学报, 2018, 31(6): 1135-1142. Kang W H, Shi W D, Luo H L, et al.cDNA-AFLP analysis of insect resistance in flowering Chinese cabbage (Brassica rapa var. parachinensis)[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1135-1142. [11] 曹士先. 基于cDNA-AFLP筛选茶树被茶尺蠖取食诱导的相关差异基因及SAMT的克隆与表达分析[D]. 合肥: 安徽农业大学, 2012. Cao S X.Differential genes responsive to tea looper (Ectropis obliqua) herbivore were screened by cDNA-AFLP and molecular cloning, expression of the SAMT in tea plant(Camellia sinensis) [D]. Hefei: Anhui Agriculture University, 2012. [12] 张新春, 肖茜, 高兆银, 等. 不同来源荔枝炭疽菌致病性差异的测定[J]. 果树学报, 2014, 31(2): 296-301. Zhang X C, Xiao Q, Gao Z Y, et al.The detection of pathogenicity for Colletotricum from different litchi cultivars and regions[J]. Journal of Fruit Science, 2014, 31(2): 296-301. [13] Bachem C, Oomen R, Visser R.Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecular Biology Reporter, 1998, 16(2): 157-173. [14] 郭朋. 基于cDNA-AFLP的硼毒下柑橘根叶基因差异表达的研究[D]. 福州: 福建农林大学, 2013. Guo P.Gene expression analysis of citrus roots and leaves in response to boron toxicity revealed by cDNA-AFLP [D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. [15] Xia E H, Li F D, Tong W, et al.Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. [16] 刘圆, 王丽鸳, 韦康, 等. 不同氮处理茶树实时定量PCR内参基因筛选和验证[J]. 茶叶科学, 2016, 36(1): 92-101. Liu Y, Wang L Y, Wei K, et al.Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis) under different nitrogen nutrition[J]. Journal of Tea Science, 2016, 36(1): 92-101. [17] Reijans M, Lascaris R, Groeneger A O, et al.Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae[J]. Genomics, 2003, 82(6): 606-618. [18] 王超, 曲晓军, 崔艳华. cDNA-AFLP技术及其在基因差异表达中的应用[J]. 安徽农业科学, 2014, 42(21): 6937-6940. Wang C, Qu X J, Cui Y H. cDNA-AFLP technology and its application in gene differential expression[J]. Journal of Anhui Agricultural Sciences, 2014, 42(21): 6937-6940. [19] 孙洪计, 魏慧君. RNA-Seq技术在转录组研究中的应用[J]. 中外医学研究, 2018, 16(20): 184-187. Sun H J, Wei H J.The application of RNA-Seq technology in the study of the transcriptome[J]. Chinese and Foreign Medical Research, 2018, 16(20): 184-187. [20] Wang Y C, Hao X Y, Lu Q H, et al.Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose[J]. Horticulture Research, 2018, 5: 18. doi: 10.1038/s41438-018-0025-2. [21] Senthilkumar P, Thirugnanasambantham K, Mandal A K.Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection[J]. Applied Biochemistry Biotechnology, 2012, 168(7): 1917-1927. [22] Wu Z J, Li X H, Liu Z W, et al.Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis)[J]. Functional & Integrative Genomics, 2015, 15(6): 741-752. [23] Wang Y N, Tang L, Hou Y, et al.Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq[J]. Functional & Integrative Genomics, 2016, 16(4): 383-398. [24] Xu X P, Chen C H, Fan B F, et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors[J]. The Plant Cell, 2006.18(5): 1310-1326. [25] Robatzek S, Somssich I E.A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes[J]. The Plant Journal, 2001, 28(2): 123-133. |