茶叶科学 ›› 2020, Vol. 40 ›› Issue (1): 63-76.doi: 10.13305/j.cnki.jts.20200117.008
陈红平1,2,3, 刘新2, 鲁成银2,*, 邱静1,*
收稿日期:
2019-06-27
修回日期:
2019-07-25
出版日期:
2020-02-15
发布日期:
2020-02-04
通讯作者:
*lchy@mail.tricaas.com,qiujing@caas.cn
作者简介:
陈红平,男,副研究员,主要从事茶叶质量安全检测与研究方面的研究。
基金资助:
CHEN Hongping1,2,3, LIU Xin2, LU Chengyin2,*, QIU Jing1,*
Received:
2019-06-27
Revised:
2019-07-25
Online:
2020-02-15
Published:
2020-02-04
摘要: 在收集相关文献的基础上,总结分析茶叶内含物质、农药残留与金属元素在茶汤中的浸出规律。化合物的理化性质和茶叶冲泡方法是影响浸出率的内因和外因,其中内因起着决定性作用。茶汤中化合物浸出率与水溶解度呈正相关,与辛醇-水分配系数(辛醇/水)呈负相关。冲泡水温升高能显著提高茶叶内含物质与外源污染物的浸出率及其在茶汤中的浓度,冲泡时间与化合物浸出速率呈负相关,但随着时间增加,茶汤中化合物的浓度显著提高。新烟碱类农药和氨基甲酸酯类农药浸出率较高,大部分农药浸出率高于60%。金属元素在茶汤中的浸出率研究结果相差较大,氟、镍、钴在茶汤中浸出率较高,达到50%以上,铅的浸出率在20%~50%。基于质谱分析代谢组学技术将在茶叶冲泡过程的化学物质浸出规律研究中发挥重要作用,热力学理论基础和传质动力学模型将有利于更深层面认识外源有害物质在茶汤中的浸出行为。
中图分类号:
陈红平, 刘新, 鲁成银, 邱静. 茶叶内含物质与外源污染物在冲泡过程中的浸出规律[J]. 茶叶科学, 2020, 40(1): 63-76. doi: 10.13305/j.cnki.jts.20200117.008.
CHEN Hongping, LIU Xin, LU Chengyin, QIU Jing. Leaching Pattern of Internal Substances and Xenobiotic Pollutants during Tea Brewing[J]. Journal of Tea Science, 2020, 40(1): 63-76. doi: 10.13305/j.cnki.jts.20200117.008.
[1] Liang Y, Lu J, Zhang L, et al.Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290. [2] Liang Y, Lu J, Zhang L, et al.Estimation of tea quality by infusion colour difference analysis[J]. Journal of the Science of Food and Agriculture, 2005, 85(2): 286-292. [3] 余泽恩, 顶仕华, 梁青青, 等. 绿茶“陕茶1号”中主要品质成分的溶出规律研究[J]. 西南农业学报, 2018, 31(8): 1682-1689. Yu Z E, Ding S H, Liang Q Q, et al.Study on dissolving rules of main quality components in green tea ‘Shanchayihao’[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1682-1689. [4] Li J, Joung H J, Lee W, et al.The influence of different water types and brewing durations on the colloidal properties of green tea infusion[J]. International Journal of Food Science & Technology, 2015, 50(11): 2483-2489. [5] Astill C, Birch M R, Dacombe C, et al.Factors affecting the caffeine and polyphenol contents of black and green tea infusions[J]. Journal of Agricultural and Food Chemsitry, 2001, 49(11): 5340-5347. [6] Sharpe E, Hua F, Schuckers S, et al.Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties[J]. Food Chemistry, 2016, 192: 380-387. [7] Liu Y, Luo L, Liao C, et al.Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology[J]. Food Chemistry, 2018, 269: 24-34. [8] Fernando C D, Soysa P.Extraction Kinetics of phytochemicals and antioxidant activity during black tea ( [9] Jin Y, Zhao J, Kim E M, et al.comprehensive investigation of the effects of brewing conditions in sample preparation of green tea infusions[J]. Molecules, 2019, 24(9): 1735. doi:10.3390/molecules24091735. [10] 李再兵. 绿茶主要品质成分的浸出动态及其与滋味感官评分的相关性研究[D]. 杭州: 浙江大学, 2002. Li Z B.Studies on the dynamic changes of the main quality components in green tea during brewing and the correlation between the components and the organolepeic evaluation [D]. Hangzhou: Zhejiang University, 2002. [11] 金恩惠. 冲泡条件对铁观音和普洱茶的浸出规律和感官品质影响[D]. 杭州: 浙江大学, 2012. Jin E H.Effect of extraction and sensory evaluation of pu'er tea and tieguanyin in different brewing condition [D]. Hangzhou: Zhejiang University, 2012. [12] 刘晓莎. 核磁共振技术应用于铁观音茶汤水浸出物溶出规律的研究[D]. 厦门: 厦门大学, 2016. Liu X S.The application of NMR techniques in studying the water extracting behavior of Tie-guanyin tea [D]. Xiamen: Xiamen University, 2016. [13] Kelebek H.LC-DAD-ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature[J]. Food Chemistry, 2016, 204: 227-238. [14] Pérez-Burilloa S, Giménez R, Rufián-Henares J A, et al. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties[J]. Food Chemistry, 2018, 248: 111-118. [15] Saklar S, Ertas E, Ozdemir I S.Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions[J]. Journal of Food Science and Technology, 2015, 52(10): 6639-6646. [16] İlyasoğlu H, Arpa T E.Effect of brewing conditions on antioxidant properties of rosehip tea beverage: study by response surface methodology[J]. Journal of Food Science and Technology, 2017, 54(11): 3737-3743. [17] Gani A, Prasad K, Ahmad M, et al.Time-dependent extraction kinetics of infused components of different Indian black tea types using UV spectroscopy[J]. Cogent Food & Agriculture, 2016, 2(1): 1137157. doi: 10.1080/23311932.2015.1137157. [18] Nikniaz Z, Mahdavi R, Ghaemmaghami S J, et al.Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas ( [19] Zhang H, Li Y, Lv Y, et al.Influence of brewing conditions on taste components in Fuding white tea infusions[J]. Journal of Science and Food Agriculture, 2017, 97(9): 2826-2833. [20] Gan P T, Ting A S Y. Our tea-drinking habits: effects of brewing cycles and infusion time on total phenol content and antioxidants of common teas[J]. Journal of Culinary Science & Technology, 2019, 17(2): 170-183. [21] 何靓. 水质和冲泡方式对绿茶茶汤及其抗氧化性能的影响[D]. 杭州: 浙江大学, 2016. He J.Effect of water quality and brewing menthods on the quality and antioxidant ability of green tea infusion [D]. Hangzhou: Zhejiang University, 2016. [22] Franks M, Lawrence P, Abbaspourrad A, et al.The influence of water composition on flavor and nutrient extraction in green and black tea[J]. Nutrients, 2019, 11(1): 80-93. [23] Murugesh C S, Manoj J B, Haware D J, et al.Influence of water quality on nutritional and sensory characteristics of green tea infusion[J]. Journal of Food Process Engineering, 2017, 40(5): 1-10. [24] Xu Y, Zou C, Gao Y, et al.Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas[J]. Food Chemistry, 2017, 236: 142-151. [25] Xu Y, Hu X, Tang P, et al.The major factors influencing the formation of sediments in reconstituted green tea infusion[J]. Food Chemistry, 2015, 172: 831-835. [26] Karak T, Kutu F R, Nath J R, et al.Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea ( [27] Koch W, Kukula-Koch W, Komsta Ł, et al.Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis[J]. Molecules, 2018, 23(7): 1689. doi: 10.3390/molecules23071689. [28] 尹军峰. 水质对龙井茶风味品质的影响及其机制[D]. 杭州: 浙江工商大学, 2015. Yin J F.Effect of water quality on flavor quality of Longjing tea infusion and its mechanism [D]. Hangzhou: Zhejiang Gongshang University, 2015. [29] 郑少燕. 不同水质对白茶内含物溶释及茶汤品质风味的影响[D]. 福州: 福建农林大学, 2016. Zheng S Y.Effects of brewing water on the components dissolution and infusion quality of white tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. [30] Pan R, Chen H, Wang C, et al.Enantioselective dissipation of acephate and its metabolite, methamidophos, during tea cultivation, manufacturing, and infusion[J]. Journal of Agricultural and Food Chemistry, 2015, 63(4): 1300-1308. [31] Chen H, Pan M, Pan R, et al.Transfer rates of 19 typical pesticides and the relationship with their physicochemical property[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2): 723-730. [32] Jaggi S, Sood C, Kumar V, et al.Leaching of pesticides in tea brew[J]. Journal of Agricultural and Food Chemistry, 2001, 49(11): 5479-5483. [33] Pan R, Chen H, Zhang M, et al.Dissipation pattern, processing factors, and safety evaluation for dimethoate and its metabolite (Omethoate) in tea ( [34] Cho S, El-Aty A M A, Rahman M M, et al. Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography[J]. Food Chemistry, 2014, 165: 532-539. [35] Wang J, Cheung W, Leung D.Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea[J]. Journal of Agricultural and Food Chemistry, 2014, 62(4): 966-983. [36] Gupta M, Shanker A.Persistence of acetamiprid in tea and its transfer from made tea to infusion[J]. Food Chemistry, 2008, 111(4): 805-810. [37] Hou R, Hu J, Qian X, et al.Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea[J]. Food Additives & Contaminants: Part A, 2013, 30(10): 1761-1769. [38] Fang Q, Shi Y, Cao H, et al.Degradation dynamics and dietary risk assessments of two neonicotinoid insecticides during [39] Satheshkumar A, Senthurpandian V K, Shanmugaselvan V A.Dissipation kinetics of bifenazate in tea under tropical conditions[J]. Food Chemistry, 2014, 145: 1092-1096. [40] Tewary D K, Kumar V, Ravindranath S D, et al.Dissipation behavior of bifenthrin residues in tea and its brew[J]. Food Control, 2005, 16(3): 231-237. [41] Seenivasan S, Muraleedharan N N.Residues of lambda-cyhalothrin in tea[J]. Food and Chemical Toxicology, 2009, 47(2): 502-505. [42] Xiao J, Li Y, Fang Q, et al.Factors affecting transfer of pyrethroidresiduesfrom herbal teas to infusion and influence of physicochemical properties of pesticides[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1157. doi: 10.3390/ijerph14101157. [43] Paramasivam M, Chandrasekaran S.Persistence behaviour of deltamethrin on tea and its transfer from processed tea to infusion[J]. Chemosphere, 2014, 111: 291-295. [44] Chen L, Chen J, Guo Y, et al.Study on the simultaneous determination of seven benzoylurea pesticides in Oolong tea and their leaching characteristics during infusing process by HPLC-MS/MS[J]. Food Chemistry, 2014, 143: 405-410. [45] Chen Z, Wan H.Factors affecting residues of pesticides in tea[J]. Pesticides Science, 1988, 23(2): 109-118. [46] Liao M, Shi Y, Cao H, et al.Dissipation behavior of octachlorodipropyl ether residues during tea planting and brewing process[J]. Environmental and Monitoring Assessment, 2016, 188: 551. doi: 10.1007/s10661-016-5573-z. [47] Wang X, Zhou L, Luo F, et al.9,10-Anthraquinone deposit in tea plantation might be one of the reasons for contamination in tea[J]. Food Chemistry, 2018, 244: 254-259. [48] Xue J, Li H, Liu F, et al.Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion[J]. Food Additives & Contaminants: Part A, 2014, 31(4): 666-675. [49] Zhou L, Jiang Y, Lin Q, et al.Residue transfer and risk assessment of carbendazim in tea[J]. Journal of Science of Food and Agricuture, 2018, 98(4): 5329-5334. [50] Zhou L, Luo F, Zhang X, et al.Dissipation, transfer and safety evaluation of emamectin benzoate in tea[J]. Food Chemistry, 2016, 202: 199-204. [51] Kumar V, Tewary D K, Ravindranath S D, et al.Investigation in tea on fate of fenazaquin residue and its transfer in brew[J]. Food and Chemical Toxicology, 2004, 42(3): 423-428. [52] Chen H, Gao G, Liu P, et al.Development and validation of an ultra performance liquid chromatography Q-ExactiveOrbitrap mass spectrometry for the determination of fipronil and its metabolites in tea and chrysanthemum[J]. Food Chemistry, 2018, 246: 328-334. [53] Chen H, Liu X, Yang D, et al.Degradation pattern of gibberellic acid during the whole process of tea production[J]. Food Chemistry, 2013, 138(2/3): 976-981. [54] Kumar V, Sood C, Jaggi S, et al.Dissipation behavior of propargite--an acaricide residues in soil, apple ( [55] Wan H, Xia H, Chen Z.Extraction of pesticide residues in tea by water during the infusion process[J]. Food Additives & Contaminants, 1991, 8(4): 497-500. [56] Wang X, Zhou L, Zhang X, et al.Transfer of pesticide residue during tea brewing: Understanding the effects of pesticide's physico-chemical parameters on its transfer behavior[J]. Food Research International, 2019, 121: 776-784. [57] Chen H, Pan M, Liu X, et al.Evaluation of transfer rates of multi pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry[J]. Food Chemistry, 2017, 216: 1-9. [58] Ozbey A, Uygun U.Behaviour of some organophosphorus pesticide residues in peppermint tea during the infusion process[J]. Food Chemistry, 2007, 104(1): 237-241. [59] Liu P, Chen H, Gao G, et al.Occurrence and residue pattern of phthalate esters in fresh tea leaves and during tea manufacturing and brewing[J]. Journal of Agricultural and Food Chemistry, 2016, 64(46): 8909-8917. [60] Gao W, Yan M, Xiao Y, et al.Rinsing tea before brewing decreases pesticide residues in tea infusion[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5384-5393. [61] Fred-Ahmadu O H, Adedapo A E, Oloyede M O, et al. Chemical speciation and characterization of trace metals in dry [62] Wen B, Duan Y, Zhang Y, et al.Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control[J]. Chemosphere, 2018, 204: 92-100. [63] Brzezicha-Cirocka J, Grembecka M, Szefer P.Monitoring of essential and heavy metals in green tea from different geographical origins[J]. Environmental and Monitoring Assessment, 2016, 188: 183. doi: 10.1007/s10661-016-5157-y. [64] Zhang R, Zhang H, Chen Q, et al.Composition, distribution and risk of total fluorine, extractable organofluorine and perfluorinated compounds in Chinese teas[J]. Food Chemistry, 2019, 219: 496-502. [65] Malik J, Frankova A, Drabek O, et al.Aluminium and other elements in selected herbal tea plant species and their infusions[J]. Food Chemistry, 2013, 139: 728-734. [66] Nookabkaew S, Rangkadilok N, Satayavivad J.Determination of trace elements in herbal tea products and their infusions consumed in Thailand[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18): 6939-6944. [67] 屈艳琴, 何焱, 刘芷君, 等. 白茶中铝、铁、锰元素的测定及溶出特征分析[J]. 茶叶学报, 2018, 59(4): 211-214. Qu Y Q, He Y, Liu Z J, et al.Determination and leaching at brewing of aluminum, iron and manganese in white tea[J]. Acta Tea Sinica, 2018, 59(4): 211-214. [68] Schulzki, G, Nüßlein B, Sievers, H. Transition rates of selected metals determined in various types of teas ( [69] 张清海, 龙章波, 林绍霞, 等. 贵州云雾茶园土壤高含量重金属和砷在茶叶中的积累与浸出特征[J]. 食品科学, 2013, 34(8): 212-215. Zhang Q H, Long Z B, Lin S X, et al.Distribution of heavy metals in soil and tea from Yunwu tea area in Guizhou province and diffusion characteristics of heavy metals in tea infusion[J]. Food Science, 2013, 34(8): 212-215. [70] Klink A, Dambiec M, Polechońska L, et al.Evalution of macroelements and fluorine in leaf and bagged black teas[J]. Food Measure, 2017, 12(1): 488-496. [71] 杨钦沾, 陈孟君, 温恒, 等. 茶叶中10种重金属浸出率[J]. 福建农业学报, 2015, 30(4): 406-410. Yang Q Z, Chen M J, Wen H, et al.Leaching rates of ten heavy metals in tea[J]. Fujian Journal of Agricultural Sciences, 2015, 30(4): 406-410. [72] Li L, Fu Q, Achal C, et al.A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China[J]. Environmental and Monitoring Assessment, 2015, 187: 228. doi: 10.1007/s10661-015-4445-2. [73] Chand P, Sharma R, Prasad R, et al.Determination of essential & toxic metals and its transversal pattern from soil to tea brew[J]. Food and Nutrition Sciences, 2011, 2: 1160-1165. [74] Karak T, Paul R K, Kutu F R, et al.Comparative assessment of copper, iron, and zinc contents in selected Indian (Assam) and South African (Thohoyandou) tea ( [75] 徐洁, 叶芝祥, 张丽, 等. 茶叶中重金属浸出规律的研究[J]. 化学分析计量, 2007(1): 23-25. Xu J, Ye Z X, Zhang L, et al.Study on the law of heavy metal leaching in tea[J]. Chemical Analysis and Meterage, 2007(1): 23-25. [76] Das S, Oliveira L M, Silva F, et al.Fluoride concentrations in traditional and herbal teas: Health risk assessment[J]. Environmental Pollution, 2017, 231: 779-784. [77] 陈利燕, 刘新, 刘汀. 紧压茶中铅的浸出规律研究[J]. 中国茶叶加工, 2010(4): 10-12. Chen Y L, Liu X, Liu T.Study on the leaching law of lead in pressed tea[J]. China Tea Processing, 2010(4): 10-12. [78] Zazouli M A, Bankper A M.Determination of cadmium and lead contents in black tea and tea liquor from Iran[J]. Asian Journal of Chemistry, 2010, 22(2): 1387-1393. [79] 毛清黎, 王星飞, 朱旗, 等. 富锌茶的锌浸出率及其饮用安全性研究[J]. 食品科学, 2003(8): 137-139. Mao Q L, Wang X F, Zhu Q, et al.Study on zinc leaching rate and drinking safety of Zn-enriched tea[J]. Food Science, 2003(8): 137-139. [80] 刘锐. 浸泡温度对不同茶叶中重金属浸出的影响分析[J].昆明学院学报, 2017, 39(3): 43-48. Liu R.Effects of immersion temperatures on dissolving of metal elements in different tea infusions[J]. Journal of Kunming University, 2017, 39(3): 43-48. [81] 傅仙玉, 钟智霞, 武广珩, 等. 武夷岩茶水仙和肉桂中氟离子的浸出规律研究[J]. 阜阳师范学院学报(自然科学版), 2019, 36(1): 40-44. Fu X Y, Zhong Z X, Wu G H, et al.Study on fluorine ion leaching of Shuixian and Rougui in Wuyi rock tea[J]. Journal of Fuyang Normal University (Natural Science), 2019, 36(1): 40-44. [82] 宋曼铜, 王欢, 叶丽杰, 等. 火焰原子吸收光谱法测定茶水中铜、锌元素的含量及冲泡时间对其浸出量的影响[J]. 沈阳医学院学报, 2016, 18(6): 459-461. Song M T, Wang H, Ye L J, et al.Determination on the content of copper and zinc in tea by flame atomic absorption spectrophotometry[J]. Journal of Shenyang Medical College, 2016, 18(6): 459-461. [83] Miri M, Bhatnagar A, Mahdavi Y, et al.Probabilistic risk assessment of exposure to fluoride in most consumed brands of tea in the Middle East[J]. Food and Chemical Toxicology, 2018, 115: 267-272. |
[1] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[2] | 胡高华, 曹建荣, 杨蕾文宣, 王晨, 周苏娟, 刘新, 鲁成银, 陈红平, 马桂岑. 基于壳聚糖/氧化石墨烯/硅藻土固相萃取-液相色谱串联质谱测定茶叶中多种农药残留[J]. 茶叶科学, 2022, 42(2): 249-262. |
[3] | 马佳丽, 王晨, 陈红平, 柴云峰, 诸力, 刘新. 注射器内分散固相萃取-超高效液相色谱-串联质谱法快速测定茶叶中24种农药残留[J]. 茶叶科学, 2021, 41(5): 717-730. |
[4] | 楚博, 罗逢健, 罗宗秀, 刘岩, 楼正云, 陈华才, 蔡晓明. 茶园应用植保无人飞机的可行性评价[J]. 茶叶科学, 2021, 41(2): 203-212. |
[5] | 王微, 鄢人雨, 兰吉玉, 何洁, 潘承丹, 胡毅. 黔东南州茶叶农药残留膳食摄入风险评估[J]. 茶叶科学, 2019, 39(5): 567-575. |
[6] | 曾艳, 郎红, 杨巧慧, 李霞雪, 史朝婷. 固相萃取-GC/LC-MS/MS测定茶叶中79种农药残留[J]. 茶叶科学, 2019, 39(5): 576-586. |
[7] | 高万君, 张永志, 童蒙蒙, 马慧勤, 钱珊珊, 王天雨, 李叶云, 吴慧平, 侯如燕. 茶园常用除草剂田间药效试验与残留动态[J]. 茶叶科学, 2019, 39(5): 587-594. |
[8] | 余焕, 周利, 林琴, 杨洁, 孙荷芝, 伍旭东, 王新茹, 张新忠, 陈宗懋, 罗逢健. 固相萃取-超高效液相色谱串联质谱测定茶产品中吡蚜酮[J]. 茶叶科学, 2019, 39(4): 440-446. |
[9] | 金莉莉, 郝振霞, 高贯威, 柴云峰, 王晨, 陈红平, 鲁成银. 超高效液相色谱-静电场轨道阱高分辨质谱法测定茶叶中21种农药残留量[J]. 茶叶科学, 2018, 38(6): 595-605. |
[10] | 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015, 35(2): 110-120. |
[11] | 刘妍慧, 于常红, 刘岩, 刘健, 张婷. 基质固相分散萃取-高效液相色谱串联质谱法(HPLC-MS-MS)同时测定茶叶中11种农药的残留量[J]. 茶叶科学, 2014, 34(3): 271-278. |
[12] | 张芬, 张新忠, 陈宗懋, 罗逢健, 楼正云, 孙威江. 两种不同溶解度农药残留在茶汤中的浸出规律研究[J]. 茶叶科学, 2013, 33(5): 482-490. |
[13] | 王孝辉, 宛晓春, 侯如燕. 茶叶中吡虫啉农药残留的液相色谱检测方法[J]. 茶叶科学, 2012, 32(3): 203-209. |
[14] | Anoop Kumar Barooah, Monorama Borthakur, Jatindra Nath Kalita, Tabaruk Hussain, Kasturi Chaudhury, Rajib Nath. 茶叶中农药残留及其通过茶汤进入人体量的估算[J]. 茶叶科学, 2011, 31(5): 419-426. |
[15] | 陈红平, 刘新, 汪庆华, 蒋迎. 茶叶中7种除草剂农药残留气相色谱–串联质谱测定[J]. 茶叶科学, 2011, 31(4): 283-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|