[1] 蒲国涛, 张锡友, 胡春学, 等. 茶树茶饼病防治研究进展[J]. 陕西农业科学, 2015, 61(5): 79-81. Pu G T, Zhang X Y, Hu C X, et al.Research advances in management of tea blister blight[J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(5): 79-81. [2] 陈宗懋. 茶树病害的诊断和防治[M]. 上海: 上海科学技术出版社, 1990. Chen Z M.Diagnosis and prevention of tea tree diseases [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990. [3] 郑国建, 高海燕. 我国茶叶产品质量安全现状分析[J]. 食品安全质量检测学报, 2015, 6(7): 2869-2872. Zheng G J, Gao H Y.The status analysis of tea quality safety in China[J]. Journal of Food Safety & Quality, 2015, 6(7): 2869-2872. [4] 谭荣荣, 毛迎新, 龚自明. 茶饼病的发生规律及病原菌的生物学特性研究[J], 湖北农业科学, 2015, 54(20): 5027-5030. Tan R R, Mao Y X, Gong Z M.Studies on the occurrence law of tea blister blight and biological characteristics of Exobasidium vexans Massee[J]. Hubei Agricultural Sciences, 2015, 54(20): 5027-5030. [5] 智亚楠, 陈利军, 史洪中, 等. 茶树茶饼病的综合防治研究进展[J]. 信阳农林学院学报, 2018, 28(1): 98-100. Zhi Y N, Chen L J, Shi H Z, et al.Research advances in integrated management of tea blister blight[J]. Journal of Xinyang Agriculture and Forestry University, 2018, 28(1): 98-100. [6] 赵晓珍, 王勇, 任亚峰, 等. 茶饼病病原—Exobasidium vexans侵染茶树叶片过程的形态学观察[J]. 中国农学通报, 2018, 34(5): 117-122. Zhao X Z, Wang Y, Ren Y F, et al.The morphology observation of infection process for the pathogen Exobasidium vexans of tea blister blight against tea leaf[J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 117-122. [7] 郭春秋, 王文龙, 吴娜. 茶饼病菌的分离培养及其刺激作用[J]. 吉首大学学报(自然科学版), 2005, 26(4): 103-108. Guo C Q, Wang W L, Wu N.Culture of Exobasidium Gracile (Shirai) Syd and its stimulating effects[J]. Journal of Jishou University(Natural Sciences Edition), 2005, 26(4): 103-108. [8] Tian L, Shi S, Nasir F, et al.Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses[J]. Rice, 2018, 11(1): 26. doi: 10.1186/s12284-018-0211-8. [9] Windram O, Madhou P, McHattie S, et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis[J]. The Plant Cell, 2012, 24(9): 3530-3557. [10] Smith J E, Mengesha B, Tang H, et al.Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming[J]. BMC Genomics, 2014, 15(1): 334. doi: 10.1186/1471-2164-15-334. [11] Li X, Zhu L, Tu L, et al.Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry[J]. Journal of Experimental Botany, 2011, 62(15): 5607-5621. [12] Ke X, Yin Z, Song N, et al.Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree[J]. Fungal Genetics and Biology, 2014, 68(7): 31-38. [13] Wu J, Zhang Y, Zhang H, et al.Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology[J]. BMC Plant Biology, 2010(10): 234. doi: 10.1186/1471-2229-10-234. [14] Wang Y, Zhou Z, Gao J, et al.The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data[J]. Front Plant Scienec, 2016(7): 1654. doi: 10.3389/fpls.2016.01654. [15] Serrazina S, Santos C, Machado H, et al.Castanea root transcriptome in response to Phytophthora cinnamomi challenge[J]. Tree Genetics & Genomes, 2015(11): 6. doi: 10.1007/s11295-014-0829-7. [16] Faino L, de Jonge R, Thomma B.P. The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing[J]. Plant Signaling & Behavior, 2012, 7(9): 1065-1069. [17] 王玉春. 中国茶树炭疽菌系统发育学研究及茶树咖啡碱抗炭疽病的作用[D]. 杨凌: 西北农林科技大学, 2016. Wang Y C.Phylogenetics of Colletotrichum species isolated from Camellia sinensis in China and effects of caffeine in tea plant resistance to anthracnose [D]. Yangling: Northwest A&F University, 2016. [18] 冉隆洵, 玉香甩, 曾莉, 等. 云南大叶种茶树茶饼病发生及防治研究[J]. 西南农业学报, 2009, 22(3): 651-654. Ran L X, Yu X S, Ceng L, et al.Occurrence and control of Exobasidium vexans Massee on large-leaf variety tea plants in Menghai tea growing area[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(3): 651-654. [19] 李向阳, 齐普应, 陈凯, 等. 几种生物农药对高海拔茶区茶饼病的防效试验初报[J]. 茶叶学报, 2017, 58(4): 201-203. Li X Y, Qi P Y, Chen K, et al.A preliminary study on biopesticides for controlling Exobasidium vexans Massee at high altitude tea plantations[J]. Acta Tea Sinica, 2017, 58(4): 201-203. [20] 魏朝霞, 唐嘉义. 4种生物农药对茶饼病的防效试验[J]. 贵州农业科学, 2011, 39(3): 98-100. Wei C X, Tang J Y.Control effect of four biological pesticides on Exobasidium vexans[J]. Guizhou Agricultural Sciences, 2011, 39(3): 98-100. [21] 吴全聪, 陈方景, 雷永宏, 等. 丽水市茶饼病发生及影响因子分析[J]. 茶叶科学, 2013, 33(2): 131-139. Wu Q C, Chen F J, Lei Y H, et al.Analysis on the occurrence and its influencing factors of tea blister blight in Lishui city[J]. Journal of Tea Science, 2013, 33(2): 131-139. [22] 王绍梅, 宋文明. 茶饼病的发生规律与综合防治[J]. 云南农业科技, 2012(4): 45-46. Wang S M, Song W M.The occurrence law of tea blister blight and its comprehensive[J]. Yunnan Agricultural Science and Technology, 2012(4): 45-46. [23] Cantu D, Vicente A, Labavitch J, et al.Strangers in the matrix: plant cell walls and pathogen susceptibility[J]. Trends in Plant Science, 2008, 13(11): 610-617. [24] Underwood W, Somerville S.Focal accumulation of defences at sites of fungal pathogen attack[J]. Journal of Experimental Botany, 2008, 59(13): 3501-3508. [25] Schulze-Lefert P.Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall[J]. Current Opinion in Plant Biology, 2004, 7(4): 377-383. [26] Lipka V, Dittgen J, Bednarek P, et al.Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis[J]. Science, 2005, 310(5751): 1180-1183. [27] 郭艳玲, 张鹏英, 郭默然, 等. 次生代谢产物与植物抗病防御反应[J]. 植物生理学报, 2012, 48(5): 429-434. Guo Y L, Zhang P Y, Guo M R, et al.Secondary metabolites and plant defence against pathogenic disease[J]. Plant Physiology Journal, 2012, 48(5): 429-434. [28] Ahuja I, Kissen R, Bones A.Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17(2): 73-90. [29] Lecourieux D, Lamotte O, Bourque S, et al.Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells[J]. Cell Calcium, 2005, 38(6): 527-538. [30] Dodd A, Kudla J, Sanders D.The language of calcium signaling[J]. Annual Review of Plant Biology, 2010, 61(4): 593-620. [31] Yamakawa H, Mitsuhara I, Ito N, et al.Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant[J]. European Journal of Biochemistry, 2001, 268(14): 3916-3929. [32] Lu D, Wu S, Gao X, et al.A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496-501. [33] Seifi H, Van Bockhaven J, Angenon G, et al.Glutamate metabolism in plant disease and defense: friend or foe?[J]. Molecular Plant-microbe Interactions, 2013, 26(5): 475-485. [34] Kadotani N, Akagi A, Takatsuji H, et al.Exogenous proteinogenic amino acids induce systemic resistance in rice[J]. BMC Plant Biology, 2016, 16(1): 60. doi: 10.1186/s12870-016-0748-x. [35] 杨佳丽. L-谷氨酸对果实抗性的诱导作用及其相关机理研究[D]. 杭州: 浙江大学, 2017. Yang J L.Effect of L-glutamate on inhibiting postharvest diseases by inducing resistance in fruit and the possible defense mechanisms involved [D]. Hangzhou: Zhejiang University, 2017. [36] 何兰兰, 柴蒙亮, 韩泽刚, 等. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达[J]. 西北植物学报, 2013, 33(12): 2375-2381. He L L, Cai M L, Han Z G, et al.Cloning and expression of ERF-B3 subgroup transcription factor related to resistant Fusarium oxysporum f. sp. vasin fectum in cotton[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(12): 2375-2381. [37] Zhao Y, Wei T, Yin K, et al.Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses[J]. New Phytologist, 2012, 195(2): 450-460. [38] Raffaele S, Rivas S, Roby D.An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis[J]. FEBS Letters, 2006, 580(14): 3498-3504. [39] McHale N, Koning R. PHANTASTICA regulates development of the adaxial mesophyll in nicotiana leaves[J]. The Plant Cell, 2004, 16(5): 1251-1262. [40] Tian Z, Zhang Y, Liu J, et al.Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance[J]. Plant Biology, 2010, 12(5): 689-697. [41] Zhang H, Zhao T, Zhuang P, et al.NbCZF1, a novel C2H2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in Nicotiana benthamiana[J]. Plant and Cell Physiology, 2016, 57(12): 2472-2484. [42] AbuQamar S, Chen X, Dhawan R, et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection[J]. The Plant Journal, 2006, 48(1): 28-44. [43] Guo Y, Yu Y, Wang D, et al.GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5[J]. New Phytologist, 2009, 183(1): 62-75. [44] Mayrose M, Ekengren S, Melech-Bonfil S, et al.A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response[J]. Molecular Plant Pathology, 2006, 7(6): 593-604. |