[1] Chen L, Zhou Z X.Variations of main quality components of tea genetic resources preserved in China national germplasm tea repository[J]. Plant Foods for Human Nutrition, 2005, 60(1): 31-35. [2] 陈兴琰, 唐明德, 陈国本, 等. 湖南主要茶树群体种质资源研究(上)[J]. 茶叶通讯, 1989(1): 34-39. Chen X Y, Tang M D, Chen G B, et al.Study on the germplasm resources of main tea populations in Hunan province[J]. Journal of Tea Communication, 1989(1): 34-39. [3] 刘振, 李赛君, 成杨, 等. 城步县茶树种质资源调查初报[J]. 茶叶通讯, 2018, 45(1): 24-28. Liu Z, Li S J, Cheng Y, et al.Investigation report on tea germplasm resources in Chengbu county[J]. Journal of Tea Communication, 2018, 45(1): 24-28. [1] Newton A C, Allnutt A R, Gillies A C, et al.Molecular phylogeography,intraspecific variation and the conservation of tree species[J]. Trends Ecology Evolution, 1999, 14(4): 140-145. [2] Ni S, Chen L, Yao M Z, et al.Germplasm and breeding research of tea plant, Camellia sinensis (L.) O. Kuntze, based on DNA molecular marker approaches[J]. Frontiers of Agriculture in China. 2008, 2(2): 200-207. [4] Petit R J, Kremar A, Wagner D B.Geographic structure of chloroplast DNA polymorphisms in European oaks[J]. Theoretical and Applied Genetics, 1993, 87(1/2): 122-128. [3] Yang J B, Yang S X, Li H T, et al.Comparative chloroplast genomes of Camellia species[J]. PLoS One, 2013, 8(8): e73053. doi: 10.1371/journal.pone.0073053. [4] 马建强. 茶树高密度遗传图谱构建及重要性状QTL定位[D]. 北京: 中国农业科学院研究生院, 2013. Ma J Q.Construction of high-density genetic map and its application for QTL analysis in tea plant [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. [5] 成杨, 刘振, 赵洋, 等. 江华苦茶的亲缘关系与遗传多样性研究[J]. 茶叶通讯, 2019, 46(2): 141-148. Cheng Y, Liu Z, Zhao Y, et al.Study on the genetic relationship and genetic diversity of Jianghua bitter tea[J]. Journal of Tea Communication, 2019, 46(2): 141-148. [6] 高连明, 刘杰, 蔡杰, 等. 关于植物DNA条形码研究技术规范[J]. 植物分类与资源学报, 2012, 34(6): 592-606. Gao L M, Liu J, Cai J, et al.A synopsis of technical notes on the standards for plant DNA barcoding[J]. Plant diversity and resources, 2012, 34(6): 592-606. [7] Tamura K, Stecher G, Peterson D, et al.MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30: 2725-2729. [5] Bandelt H J, Forster P, Rohl A.Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48. [8] Excoffier L. Laval G, Schneider S.Arlequin (version 3.0): an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 2005, 1: 47-50. [9] Crandall K A, Templeton A R.Empirical tests of some predictions from coalescent theory with Applications to intraspecific phylogeny reconstruction[J]. Genetics, 1993, 134(3): 959-969. [10] Yao M Z, Ma C L, Qiao T T, et al.Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetic adn Genomes, 2012, 8: 205-220. [11] Fang W, Cheng H, Duan Y, et al.Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers[J]. Plant Systematics and Evolution, 2012, 298(2): 469-483. [6] Wang R J, Gao X F, Kong X R, et al.An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers[J]. Springer Plus, 2016, 5: 1152-1168. [12] 宋伟林. 基于SSR荧光标记毛细管电泳的油菜品种DNA指纹鉴定技术平台的建立与应用[D]. 北京: 中国农业科学院研究生院, 2013. Song W L.Establishment and application of a technology platform for DNA fingerprint identification of rapeseed cultivars based on capillary electrophoresis with SSR fluorescence makers [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. [7] Wambulwa M, Meegahakumbura M K, Kamuny S, et al.Insights into the genetic relationships and breeding patterns of the African tea germplasm based on nSSR markers and cpDNA sequences[J]. Frontiers in Plant Science, 2016, 7: 1244-1255. [8] Harris S A, Ingram R.Chloroplast DNA and biosystematics: the effects of intra-specific diversity and plastid transmission[J]. Taxon, 1991, 14: 393-412. [13] Rendell S, Ennos R A.Chloroplast DNA diversity in Calluna vulgaris (heather) populations in Europe[J]. Molecular Ecology, 2002, 11: 69-78. [9] Hamrick J L, Godt M J W, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species[J]. New Forests, 1992, 6(1): 95-124. [14] Ennos R.Estimating the relative rates of pollen and seed migration among plant populations[J]. Heredity, 1994, 72(3): 250-259. [15] 刘晶. 中国豆梨和川梨的遗传多样性和群体遗传结构研究[D]. 杭州: 浙江大学, 2013. Liu J.Studies on genetic diversity and structure of Pyrus calleryana and P. pashia in China [D]. Hangzhou: Zhejiang University, 2013. [16] Millar C I.A steep cline in pinus muricata[J]. Evolution, 1983, 37: 311-319. [10] 杜玉娟. 孓遗植物珙桐的群体遗传学和谱系地理学研究[D]. 杭州: 浙江大学, 2012. Du Y J.Studies on population genetics and phylogeography of Davidia involucrata (Davidiaceae) [D]. Hangzhou: Zhejiang University, 2012. [11] Iketani H, Yamamoto T, Katayama H, et al.Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan[J]. Conservation Genetics, 2010, 11(1): 115-126. [12] Petit R J, Duminil J, Fineschi S, et al.Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations[J]. Molecular Ecology, 2005, 14: 689-701. |