茶叶科学 ›› 2020, Vol. 40 ›› Issue (3): 319-327.doi: 10.13305/j.cnki.jts.2020.03.003
何斐, 李冬花, 卜凡
收稿日期:
2019-10-27
修回日期:
2019-12-24
出版日期:
2020-06-15
发布日期:
2020-06-09
作者简介:
何斐,女,副教授,主要从事微生物资源利用方面的研究。hefei6000@163.com
基金资助:
HE Fei, LI Donghua, BU Fan
Received:
2019-10-27
Revised:
2019-12-24
Online:
2020-06-15
Published:
2020-06-09
摘要: 对陕西安康汉水韵茶园栽培的5个品种茶树根际丛枝菌根(Arbuscular mycorrhiza,AM)真菌群落结构特征进行分析,以期丰富我国茶树AM真菌种质资源库。结果表明,不同品种茶树根际AM真菌种丰度及种属组成等存在差异。其中,紫阳群体种茶树根际分离的AM真菌最多(6种),陕茶1号、龙井长叶、龙井43和福鼎大白茶各分离到5、4、4种和3种。龙井长叶茶树根际AM真菌孢子密度最高(每克干土含3.57个孢子),龙井43最低(每克干土含1.10个孢子)。紫阳群体种茶树的AM真菌物种多样性Shannon-Wiener和均匀度指数均达到最高,分别为0.63和0.096,龙井长叶最低(0.18和0.027)。龙井长叶的菌根定殖率最高(29.5%),福鼎大白最低(15.8%)。不同茶树品种AM真菌种类组成的相似性系数维持在0.111~0.750,其中,龙井长叶与龙井43茶树根际AM真菌种类组成相似性系数最高,而福鼎大白和紫阳群体种相似性系数最低。研究表明,不同品种茶树根际AM真菌群落结构存在一定的差异,根际土壤中鉴定的AM真菌资源对进一步筛选和研发茶树专用AM真菌菌剂,促进茶产业发展具有重要意义。
中图分类号:
何斐, 李冬花, 卜凡. 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020, 40(3): 319-327. doi: 10.13305/j.cnki.jts.2020.03.003.
HE Fei, LI Donghua, BU Fan. Analysis of Arbuscular Mycorrhizal Fungal Community Structure in the Rhizosphere of Different Tea Cultivars[J]. Journal of Tea Science, 2020, 40(3): 319-327. doi: 10.13305/j.cnki.jts.2020.03.003.
[1] | 李元敬, 刘智蕾, 何兴元, 等. 丛枝菌根共生体中碳、氮代谢及其相互关系[J]. 应用生态学报, 2014, 25(3): 903-910. |
Li Y J, Liu Z L, He X Y, et al.Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 903-910. | |
[2] | Zhu C, Tian G L, Luo G W, et al.N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield[J]. Agriculture, Ecosystems & Environment, 2018, 254: 191-201. |
[3] | Wang C, White P J, Li C J.Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site[J]. Mycorrhiza, 2016, 27(4): 1-13. |
[4] | Zhang J, Wang F, Che R X, et al.Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe[J]. Scientific Reports, 2016, 6: 23488. doi: 10.1038/srep23488. |
[5] | Manoharan L, Rosenstock N P, Williams A, et al.Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology, 2017, 115: 53-59. |
[6] | Liu H G, Wang Y J, Tang M.Arbuscular mycorrhizal fungi diversity associated with two halophytesLycium barbarumL. andElaeagnus angustifoliaL. in Ningxia, China[J]. Archives of Agronomy and Soil Science, 2017, 63(6): 796-806. |
[7] | 张海波, 梁月明, 冯书珍, 等. 土壤类型和树种对根际土丛枝菌根真菌群落及其根系侵染率的影响[J]. 农业现代化研究, 2016, 37(1): 187-194. |
Zhang H B, Liang Y M, Feng S Z, et al.The effects of soil types and plant species on arbuscular mycorrhizal fungi community and colonization in the rhizosphere[J]. Research of Agricultural Modernization, 2016, 37(1): 187-194. | |
[8] | 蔡邦平, 陈俊愉, 张启翔, 等. 云南昆明梅花品种根围丛枝菌根真菌多样性研究[J]. 北京林业大学学报, 2013, 35(S1): 38-41. |
Cai B P, Chen J Y, Zhang Q X, et al.Diversity of arbuscular mycorrhizal fungi associated withPrunus mumein Kunming, Yunnan, China[J]. Journal of Beijing Forestry University, 2013, 35(S1): 38-41. | |
[9] | 任禛, 尹敏, 夏体渊, 等. 不同烤烟品种根系丛枝菌根真菌(AMF)群落结构和组成的差异分析[J]. 烟草科技, 2016, 49(3): 1-9. |
Ren Z, Yin M, Xia T Y, et al.Structure and composition difference of arbuscular mycorrhizal fungi community in roots of flue-cured tobacco varieties[J]. Tobacco Science & Technology, 2016, 49(3): 1-9. | |
[10] | 刘辉, 陈梦, 黄引娣, 等. 安徽茶区茶树丛枝菌根真菌多样性[J]. 应用生态学报, 2017, 28(9): 2897-2906. |
Liu H, Chen M, Huang Y D, et al.Diversity of arbuscular mycorrhizal fungi in the rhizosphere of tea plant from Anhui tea area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2897-2906. | |
[11] | 罗勇, 欧淑琼, 陈丝, 等. 基于RNA-Seq的茶树CsMYB生物信息学分析[J]. 分子植物育种, 2017, 15(6): 2119-2125. |
Luo Y, Ou S Q, Chen S, et al.Bioinformatics analysis of CsMYB in tea plant (Camellia sinensis) based on RNA-seq[J]. Molecular Plant Breeding, 2017, 15(6): 2119-2125. | |
[12] | 国家茶叶产业技术体系产业经济研究室. 2018年我国茶叶产销形势分析[J]. 中国茶叶, 2019, 41(4): 32-33. |
Industrial Economy Research Office of National Tea Industry Technology System. Analysis on the situation of tea production and marketing in China in 2018[J]. China Tea, 2019, 41(4): 32-33. | |
[13] | 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根围AM真菌多样性[J]. 生物多样性, 2009, 17(5): 499-505. |
Wu L S, Wang Y, Li M, et al.Arbuscular mycorrhizal fungi diversity in the rhizosphere of tea plant (Camellia sinensis) grown in Laoshan, Shandong[J]. Biodiversity Science, 2009, 17(5): 499-505. | |
[14] | Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology & Fertility of Soils, 2008, 44(3): 491-500. |
[15] | 查林. 安康茶叶产业发展战略研究[D]. 西安: 西安理工大学, 2006. |
Cha L.The discussion on the development strategy of Ankang tea industry [D]. Xi′an: Xi′an University of Technology, 2006. | |
[16] | Phillips J M, Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assement of infection[J]. Transations of the British Mycological Society, 1970, 55(1): 158-161. |
[17] | 柳洁, 肖斌, 王丽霞, 等. 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响[J]. 茶叶科学, 2013, 33(2): 140-146. |
Liu J, Xiao B, Wang L X, et al.Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146. | |
[18] | 张春兰, 李苇洁, 姚红艳, 等. 不同猕猴桃品种根际AM真菌多样性与土壤养分相关性分析[J]. 果树学报, 2017, 34(3): 90-99. |
Zhang C L, Li W J, Yao H Y, et al.Correlation study on the diversity of the AM fungi and soil nutrients in the rhizosphere of different kiwifruit cultivars[J]. Journal of Fruit Science, 2017, 34(3): 90-99. | |
[19] | Ianson D C, Allen M F.The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites[J]. Mycologia, 1986, 78(2): 164-168. |
[20] | Schenck N C, Pérez Y.A manual for the identification of vesicular arbuscular mycorrhizal fungi[M]. Florida: University of Florida: 1990: 1-233. |
[21] | Redecker D, Schüßler A, Stockinger H.An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota)[J]. Mycorrhiza, 2013, 23(7): 515-531. |
[22] | 王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850. |
Wang Y S, Liu R J.A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7): 820-850. | |
[23] | He F, Tang M, Zhong S L.Effects of soil and climatic factors on arbuscular mycorrhizal fungi in rhizosphere soil underRobinia pseudoacaciain the Loess Plateau, China[J]. European Journal of Soil Science, 2016, 67(6): 847-856. |
[24] | Van der heijden M G A, Klironomos J N, Ursic M. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396: 69-72. |
[25] | 盛敏, 唐明, 张峰峰, 等. 土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响[J]. 生物多样性, 2011, 19(1): 85-92. |
Sheng M, Tang M, Zhang F F, et al.Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia[J]. Biodiversity Science, 2011, 19(1): 85-92. | |
[26] | Shannon C E, Weaver W.The mathematical theory of communication [M]. Urbana: Urbana university of Illinois Press. 1949, 85(2): 117. |
[27] | Pielou E C.The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144. |
[28] | Pielou E C.Ecological Diversity[M]. New York: John Wiley and Sons Inc, 1975. |
[29] | 刘洁, 刘静, 金海如. 丛枝菌根真菌N代谢与C代谢研究进展[J]. 微生物学杂志, 2011, 31(6): 70-75. |
Liu J, Liu J, Jin H R.Advancement in arbuscular mycorrhizal fungi’s N metabolic and C metabolic[J]. Journal of Microbiology, 2011, 31(6): 70-75. | |
[30] | 郭绍霞, 刘润进. 不同品种牡丹对丛枝菌根真菌群落结构的影响[J]. 应用生态学报, 2010, 21(8): 1993-1997. |
Guo S X, Liu R J.Effects of different peony cultivars on community structure of arbuscular mycorrhizal fungi in rhizosphere soil[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 1993-1997. | |
[31] | Eom A H, Hartnett D C, Wilson G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie[J]. Oecologia, 2000, 122: 435-444. |
[32] | 李岩, 焦惠, 徐丽娟, 等. AM真菌群落结构与功能研究进展[J]. 生态学报, 2010, 30(4): 1089-1096. |
Li Y, Jiao H, Xu L J, et al.Advances in the study of community structure and function of arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2010, 30(4): 1089-1096. | |
[33] | 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. |
Zhang W J, Rong J, Wei C L, et al.Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. | |
[34] | 张成才, 刘园, 姜燕华, 等. SSR标记鉴定浙江省主要无性系茶树品种的研究[J]. 植物遗传资源学报, 2014, 15(5): 926-931. |
Zhang C C, Liu Y, Jiang Y H, et al.Application of SSR markers in cultivar identification of clonal tea plant in Zhejiang province, China[J]. Journal of Plant Genetic Resources, 2014, 15(5): 926-931. | |
[35] | Chen Y S, Chen G, Fu X, e al. Phytochemical profiles and antioxidant activity of different varieties ofAdinandratea (AdinandraJack)[J]. Journal of Agricultural & Food Chemistry, 2015, 63(1): 169-176. |
[36] | 吴丽莎, 王玉, 李敏, 等. 崂山茶区茶树根际丛枝菌根真菌调查[J]. 青岛农业大学学报: 自然科学版, 2009, 26(3): 171-173. |
Wu L S, Wang Y, Li M, et al.A survey of arbuscular mycorrhizal fungi in the rhizosphere ofCamellia sinensisin Laoshan[J]. Journal of Qingdao Agricultural University (Natural Science), 2009, 26(3): 171-173. | |
[37] | 卢东升, 吴小芹. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报: 自然科学版, 2005, 29(3): 33-36. |
Lu D S, Wu X Q.Species of VAM fungi around tea roots in the southern area of Henan province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2005, 29(3): 33-36. | |
[38] | 吴铁航, 郝文英, 林先贵, 等. 红壤中VA菌根真菌(球囊霉目)的种类和生态分布[J]. 真菌学报, 1995, 14(2): 81-85. |
Wu T H, Hao W Y, Lin X G, et al.VA mycorrhizal fungi (Glomales) and their ecological distribution in red soils[J]. Acta Mycologica Sinica, 1995, 14(2): 81-85. | |
[39] | Shi Z Y, Gao S C, Wang F Y.Biodiversity of arbuscular mycorrhizal fungi in desert ecosystems[J]. Arid Zone Research, 2008, 25(6): 783-789. |
[40] | 贺学礼, 陈烝, 郭辉娟, 等. 荒漠柠条锦鸡儿AM真菌多样性[J]. 生态学报, 2012, 32(10): 3041-3049. |
He X L, Chen Z, Guo H J, et al.Diversity of arbuscular fungi in the rhizosphere ofCaragana korshinskiiKom. in desert zone[J]. Acta Ecologica Sinica, 2012, 32(10): 3041-3049. | |
[41] | 吕杰, 吕光辉, 马媛. 新疆艾比湖流域胡杨幼苗根际AM真菌多样性特征[J]. 林业科学, 2016, 52(4): 59-67. |
Lv J, Lv G H, Ma Y.Diversity of Arbuscular mycorrhizal fungi in the rhizosphere ofPopulus euphraticaseedlings in Ebinur lake basin, Xinjiang[J]. Scientia Silvae Sinicae, 2016, 52(4): 59-67. | |
[42] | 马忠莉. 松嫩草地丛枝菌根真菌孢子多样性对施肥的响应[D]. 长春: 东北师范大学, 2016. |
Ma Z L.Impacts of fertilization on the diversity of arbuscular mycorrhizal fungal spore in Songnen grassland [D]. Changchun: Northeast Normal University, 2016. | |
[43] | 李华健, 贺学礼. 河北峰峰矿区构树AM真菌物种多样性及生态适应性[J]. 河北大学学报(自然科学版), 2019, 39(3): 278-287. |
Li H J, He X L.Species diversity and ecological adaptability of AM fungi inBroussonetia papyriferafrom Fengfeng mining area in Hebei province[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 278-287. | |
[44] | 贺学礼, 郭辉娟, 王银银, 等. 内蒙古农牧交错区沙蒿根围AM真菌物种多样性[J]. 河北大学学报(自然科学版), 2012, 32(5): 506-514. |
He X L, Guo H J, Wang Y Y, et al.Species diversity of arbuscular mycorrhizal fungi in the rhizosphere ofArtemisia sphaerocephalain Inner Mongolia[J]. Journal of Hebei University (Natural Science Edition), 2012, 32(5): 506-514. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[3] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[4] | 王峰, 陈玉真, 吴志丹, 尤志明, 余文权, 俞晓敏, 杨贞标. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. |
[5] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[6] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[7] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[8] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[9] | 王涛, 王艺清, 漆思雨, 周喆, 陈志丹, 孙威江. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. |
[10] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[11] | 欧阳珂, 张成, 廖雪利, 坤吉瑞, 童华荣. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. |
[12] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[13] | 杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. |
[14] | 疏再发, 郑生宏, 邵静娜, 周慧娟, 吉庆勇, 刘瑜, 何卫中, 王丽鸳. 不同茶树品种(系)对减半施肥的响应研究[J]. 茶叶科学, 2022, 42(2): 277-289. |
[15] | 陈潇敏, 赵峰, 王淑燕, 邵淑贤, 吴文晞, 林钦, 王鹏杰, 叶乃兴. 福建野生茶树资源嘌呤生物碱构成评价及特异资源筛选[J]. 茶叶科学, 2022, 42(1): 18-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|