茶叶科学 ›› 2020, Vol. 40 ›› Issue (4): 431-440.doi: 10.13305/j.cnki.jts.2020.04.001
• 综述 • 下一篇
王绍梅1,2, 李晓君1,2, 宋文明3, 潘联云4,*
收稿日期:
2019-11-19
修回日期:
2019-11-19
出版日期:
2020-08-15
发布日期:
2020-08-18
通讯作者:
*Panly11@lzu.edu.cn
作者简介:
王绍梅,女,教授,主要从事茶叶加工、审评和茶文化方面的研究,lc-wangshaomei@163.com。
WANG Shaomei1,2, LI Xiaojun1,2, SONG Wenming3, PAN Lianyun4,*
Received:
2019-11-19
Revised:
2019-11-19
Online:
2020-08-15
Published:
2020-08-18
摘要: 糖脂代谢紊乱是引发心血管疾病、糖尿病和脂肪肝的重要原因之一。普洱茶中的没食子酸能够通过调节能量代谢和脂肪细胞分化、促进葡萄糖吸收与利用、提高胰岛素敏感性,进而改善饮食诱导引起的葡萄糖和脂质代谢紊乱。没食子酸通过AMPK途径、IR-Akt途径以及PPAR-γ受体调节线粒体能量代谢、胰岛素敏感性和葡萄糖吸收,从而维持糖脂代谢稳态。本文综述了普洱茶中的没食子酸及其改善饮食诱导的糖脂代谢紊乱作用和作用机制的研究进展。
中图分类号:
王绍梅, 李晓君, 宋文明, 潘联云. 普洱茶中没食子酸及其改善饮食诱导的糖脂代谢紊乱研究进展[J]. 茶叶科学, 2020, 40(4): 431-440. doi: 10.13305/j.cnki.jts.2020.04.001.
WANG Shaomei, LI Xiaojun, SONG Wenming, PAN Lianyun. Research Progress of Gallic Acid in Puer Tea and Its Improvement of Diet Induced Glucose and Lipid Metabolism Disorder[J]. Journal of Tea Science, 2020, 40(4): 431-440. doi: 10.13305/j.cnki.jts.2020.04.001.
[1] | Chen L, Chen X W, Huang X, et al.Regulation of glucose and lipid metabolism in health and disease[J]. Science China Life Sciences, 2019, 62: 1420-1458. |
[2] | Palermo A, Tuccinardi D, Defeudis G, et al.BMI and BMD: The potential interplay between obesity and bone fragility[J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 544. doi: 10.3390/ijerph13060544. |
[3] | 折改梅, 张香兰, 陈可可, 等. 茶氨酸和没食子酸在普洱茶中的含量变化[J]. 云南植物研究, 2005, 27(5): 572-576.She G M, Zhang X L, Chen K K, et al.Content variation of theanine and gallic acid in Pu-er tea[J]. Acta Botanica Yunnanica, 2005, 27(5): 572-576. |
[4] | 吴桢. 普洱茶渥堆发酵过程中主要生化成分的变化[D]. 重庆: 西南大学, 2008.Wu Z.The variation of chemical component during the fermentation procedure of Pu'er tea [D]. Chongqing: Southwest University, 2008. |
[5] | Pedan V, Rohn S, Holinger M, et al.Bioactive compound fingerprint analysis of aged raw Pu'er tea and young ripened Pu'er tea[J]. Molecules, 2018, 23(8): 1931. doi: 10.3390/molecules23081931. |
[6] | Shao W, Powell C, Clifford M N.The analysis by HPLC of green, black and Pu'er teas produced in Yunnan[J]. Journal of the Science of Food and Agriculture, 1995, 69(4): 535-540. |
[7] | Lv H P, Zhang Y J, Lin Z, et al.Processing and chemical constituents of Pu-erh tea: A review[J]. Food Research International, 2013, 53(2): 608-618. |
[8] | 周志宏, 杨崇仁. 云南普洱茶原料晒青毛茶的化学成分[J]. 云南植物研究, 2000(3): 343-350.Zhou Z H, Yang C R.Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan[J]. Acta Botanica Yunnanica, 2000(3): 343-350. |
[9] | 张雯洁, 刘玉清, 李兴从, 等. 云南“生态茶”的化学成分[J]. 云南植物研究, 1995(2): 204-208.Zhang W J, Liu Y Q, Li X C, et al.Chemical constituents of “Ecolocical tea” from Yunnan[J]. Acta Botanica Yunnanica. 1995(2): 204-208. |
[10] | Diepeningen A D V, Debets A J M, Varga J, et al. Efficient degradation of tannic acid by black Aspergillus species[J]. Fungal Biology, 2004, 108(8): 919-925. |
[11] | Mukherjee G, Banerjee R.Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus[J]. Journal of Basic Microbiology, 2004, 44(1): 42-48. |
[12] | 郭鲁宏, 杨顺楷. 利用固定化黑曲霉单宁酶制备没食子酸的研究[J]. 生物工程学报, 2000(5): 614-617.Guo L H, Yan S K.Study on gallic acid preparation by using immobilized tannase from Aspergillus niger[J]. Chinese Journal of Biotechnology, 2000(5): 614-617. |
[13] | Anaingsih V K, Sharma A, Zhou W.Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Research International, 2013, 50(2): 469-479. |
[14] | Macedo J A, Ferreira L R, Camara L E, et al.Chemopreventive potential of the tannase-mediated biotransformation of green tea[J]. Food Chemistry, 2012, 133(2): 358-365. |
[15] | Tanaka T, Umeki H, Nagai S, et al.Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder[J]. Food Chemistry, 2012, 134(1): 276-281. |
[16] | Park Y, Lee J, Hong V S, et al.Identification of KMU-3, a novel derivative of gallic acid, as an inhibitor of adipogenesis[J]. Plos One, 2014, 9(10): e109344. doi: 10.1371/journal.pone.0109344. |
[17] | 吕海鹏, 林智, 谷记平, 等. 普洱茶中的没食子酸研究[J]. 茶叶科学, 2007, 27(2): 104-110.Lv H P, Lin Z, Gu J P, et al.Study on the gallic acid in Pu-erh tea[J]. Journal of Tea Science, 2007, 27(2): 104-110. |
[18] | 李肖玲, 崔岚, 祝德秋. 没食子酸生物学作用的研究进展[J]. 中国药师, 2004(10): 767-769.Li X L, Cui L, Zhu D Q.Research progress on the biological effects of gallic acid[J]. China Pharmacist, 2004(10): 767-769. |
[19] | 张冬英, 邵宛芳, 刘仲华, 等. 普洱茶中没食子酸对过氧化物酶体增殖激活受体作用研究[J]. 营养学报, 2009, 31(1): 47-50.Zhang D Y, Shao W F, Liu Z H, et al.Study of gallic acid in Pu-erh tea on the peroxisome proliferators activated receptors function[J]. Acta Nutrimenta Sinica, 2009, 31(1): 47-50. |
[20] | Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection and Immunity, 2017, 86(1): e00601-17. doi: 10.1128/IAI.00601-17. |
[21] | Huang H, Lin J.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177. |
[22] | Gong J, Peng C, Chen T, et al.Effects of theabrownin from Pu-erh Tea on the metabolism of serum lipids in rats: mechanism of action[J]. Journal of Food Science, 2010, 75(6): 182-189. |
[23] | Du W, Peng S, Liu Z, et al.Hypoglycemic effect of the water extract of Pu-erh tea[J]. Journal of Agricultural and Food Chemistry, 2012, 60(40): 10126-10132. |
[24] | Kubota K, Sumi S, Tojo H, et al.Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract[J]. Nutrition Research, 2011, 31(6): 421-428. |
[25] | Silva G, Ferraresi C, De Almeida R T, et al. Insulin resistance is improved in high-fat fed mice by photobiomodulation therapy at 630 nm[J]. Journal of Biophotonics, 2020, 13(3): e201960140. doi: 10.1002/jbio.201960140. |
[26] | Collison K S, Saleh S M, Bakheet R H, et al.Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55[J]. Obesity (Silver Spring, Md), 2009, 17(11): 2003-2013. |
[27] | Samuel V T.Fructose induced lipogenesis: from sugar to fat to insulin resistance[J]. Trends in endocrinology and metabolism: TEM, 2011, 22(2): 60-65. |
[28] | Oi Y, Hou I, Fujita H, et al.Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid[J]. Phytotherapyresearch: PTR, 2012, 26(4): 475-481. |
[29] | Zeng L, Yan J, Luo L, et al.Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes[J]. Food & Function, 2015, 6(6): 2008-2016. |
[30] | Zeng X, Sheng Z, Li X, et al.In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid[J]. Journal of the Science of Food and Agriculture, 2019, 99(15): 6882-6892. |
[31] | Gandhi G R, Jothi G, Antony P J, et al.Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway[J]. European Journal of Pharmacology, 2014, 745(15): 201-216. |
[32] | Hsu C, Yen G.Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats[J]. British Journal of Nutrition, 2007, 98(4): 727-735. |
[33] | Huang D W, Chang W C, Wu J S, et al.Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet[J]. Nutrition Research, 2016, 36(2): 150-160. |
[34] | Paraíso A F, Sousa J N, Andrade J M, et al.Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach[J]. Life sciences, 2019, 237(11): 116914. doi: 10.1016/j.lfs.2019.116914. |
[35] | Bak E J, Kim J, Jang S, et al.Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice[J]. Scandinavian Journal of Clinical & Laboratory Investigation, 2013, 73(8): 607-614. |
[36] | Hsu C, Huang S, Yen G.Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 Preadipocytes in Relation to their antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2006, 54(12): 4191-4197. |
[37] | Variya B C, Bakrania A K, Patel S S.Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling[J]. Phytomedicine, 2019, 73: 152906. doi: 10.1016/j.phymed.2019.152906. |
[38] | 吕季桦, 孙璐西. 普洱茶抑制HepG2细胞株生合成胆固醇之有效成分探讨[C]//中国茶叶学会. 第四届海峡两岸茶业学术研讨会论文集, 2006.Lv J H, Sun L X.Investigation of Pu-erh tea active principles to inhibitthe cholesterol synthesis in Hep G2cell line[C]// China Tea Scienc Society. The Fourth Cross-Straits Tea Industry Proceedings, 2006. |
[39] | Way T, Lin H, Kuo D, et al.Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264. |
[40] | Elrokh E M, Yassin N A Z, Elshenawy S M, et al. Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats[J]. Inflammopharmacology, 2010, 18(6): 309-315. |
[41] | Okuno A, Tamemoto H, Tobe K, et al.Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats[J]. Journal of Clinical Investigation, 1998, 101(6): 1354-1361. |
[42] | Chao L C, Marcussamuels B, Mason M, et al.Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones[J]. Journal of Clinical Investigation, 2000, 106(10): 1221-1228. |
[43] | Cao Z, Umek R M, Mcknight S L.Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells[J]. Genes & Development, 1991, 5(9): 1538-1552. |
[44] | Farmer S R.Transcriptional control of adipocyte formation[J]. Cell Metabolism, 2006, 4(4): 263-273. |
[45] | Furuyashiki T, Nagayasu H, Aoki Y, et al.Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARγ2 and C/EBPα in 3T3-L1 cells[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(11): 2353-2359. |
[46] | Huang D W, Shen S C.Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes[J]. Journal of Functional Foods, 2012, 4(1): 358-366. |
[47] | Saltiel A R, Kahn C R.Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799-806. |
[48] | Ferrer J C, Favre C, Gomis R R, et al.Control of glycogen deposition[J]. FEBS Letters, 2003, 546(1): 127-132. |
[49] | Cannon B, Nedergaard J.Brown adipose tissue: function and physiological significance[J]. Physiological Reviews, 2004, 84(1): 277-359. |
[50] | Oelkrug R, Polymeropoulos E T, Jastroch M.Brown adipose tissue: physiological function and evolutionary significance[J]. Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology, 2015, 185(6): 587-606. |
[51] | Bartelt A, Heeren J.Adipose tissue browning and metabolic health[J]. Nature Reviews Endocrinology, 2014, 10(1): 24-36. |
[52] | Doan K V, Ko C M, Kinyua A W, et al.Gallic acid regulates body weight and glucose homeostasis through AMPK activation[J]. Endocrinology, 2015, 156(1): 157-168. |
[53] | Oneill H M, Holloway G P, Steinberg G R.AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity[J]. Molecular and Cellular Endocrinology, 2013, 366(2): 135-151. |
[54] | Hardie D G.AMPK: a target for drugs and natural products with effects on both diabetes and cancer[J]. Diabetes, 2013, 62(7): 2164-2172. |
[55] | Liesa M, Shirihai O S.Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure[J]. Cell Metabolism, 2013, 17(4): 491-506. |
[56] | Kim J, Kundu M, Viollet B, et al.AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology, 2011, 13(2): 132-141. |
[57] | Zhao M, Klionsky D J.AMPK-dependent phosphorylation of ULK1 induces autophagy[J]. Cell Metabolism, 2011, 13(2): 119-120. |
[58] | Jermendy G.PPARγ agonists: Antidiabetic drugs with a potential role in the treatment of diseases other than diabetes[J]. Diabetes Research and Clinical Practice, 2007, 78(3): 29-39. |
[59] | Latha R C R, Daisy P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats[J]. Chemico-Biological Interactions, 2011, 189(1): 112-118. |
[60] | Goldstein B J.Insulin resistance as the core defect in type 2 diabetes mellitus[J]. American Journal of Cardiology, 2002, 90(5): 3-10. |
[61] | Makihara H, Koike Y, Ohta M, et al.Gallic acid, the active ingredient of terminalia bellirica, enhances adipocyte differentiation and adiponectin secretion[J]. Biological & Pharmaceutical Bulletin, 2016, 39(7): 1137-1143. |
[62] | Hardie D G.AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10): 774-785. |
[63] | Jager S, Handschin C, Stpierre J, et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(29): 12017-12022. |
[64] | Lagouge M, Argmann C A, Gerharthines Z, et al.Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α[J]. Cell, 2006, 127(6): 1109-1122. |
[65] | Canto C, Auwerx J.PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure[J]. Current Opinion in Lipidology, 2009, 20(2): 98-105. |
[66] | Fulco M, Cen Y, Zhao P, et al.Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt[J]. Developmental Cell, 2008, 14(5): 661-673. |
[67] | Pfluger P T, Herranz D, Velascomiguel S, et al.Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9793-9798. |
[68] | Michan S, Sinclair D C.Sirtuins in mammals: insights into their biological function[J]. Biochemical Journal, 2007, 404(1): 1-13. |
[69] | Kelly G.A Review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1[J]. Alternative Medicine Review: A Journal of Clinical Therapeutic, 2010, 15(3): 245-263. |
[70] | Ramadori G, Fujikawa T, Fukuda M, et al.SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity[J]. Cell Metabolism, 2010, 12(1): 78-87. |
[71] | Erion D M, Yonemitsu S, Nie Y, et al.SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11288-11293. |
[72] | Kim Y D, Park K G, Lee Y S, et al.Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2): 306-314. |
[73] | Fullerton M D, Galic S, Marcinko K, et al.Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin[J]. Nature Medicine, 2013, 19(12): 1649-1654. |
[74] | Kido Y, Nakae J, Accili D.The insulin receptor and its cellular targets[J]. The Journal of Clinical Endocrinology and Metabolism, 2001, 86(3): 972-979. |
[75] | White M F.Insulin signaling in health and disease[J]. Science, 2003, 302(5651): 1710-1711. |
[76] | Lietzke S E, Bose S, Cronin T C, et al.Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains[J]. Molecular Cell, 2000, 6(2): 385-394. |
[77] | Kim Y B, Peroni O D, Franke T F, et al.Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats[J]. Diabetes, 2000, 49(5): 847-856. |
[78] | Cho H, Mu J, Kim J K, et al.Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ)[J]. Science, 2001, 292(5522): 1728-1731. |
[79] | Katome T, Obata T, Matsushima R, et al.Use of RNA Interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/Protein kinase B isoforms in insulin actions[J]. Journal of Biological Chemistry, 2003, 278(30): 28312-28323. |
[80] | Tzatsos A, Kandror K V.Nutrients suppress phosphatidylinositol 3-Kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation[J]. Molecular and Cellular Biology, 2006, 26(1): 63-76. |
[81] | Ma X, Tsuda S, Yang X, et al.Pu-erh tea hot-water extract activates Akt and induces insulin-independent glucose transport in rat skeletal muscle[J]. Journal of Medicinal Food, 2013, 16(3): 259-262. |
[82] | Tzeng T, Liou S, Liu I.Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats[J]. Evidence-based Complementary and Alternative Medicine, 2011: 150752. doi: 10.1093/ecam/neq017. |
[83] | Soccio R E, Chen E R, Lazar M A.Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes[J]. Cell Metabolism, 2014, 20(4): 573-591. |
[84] | Plutzky J.PPARs as Therapeutic targets: reverse cardiology?[J]. Science, 2003, 302(5644): 406-407. |
[85] | Sharma B R, Kim H J, Rhyu D Y.Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes[J]. Journal of Translational Medicine, 2015, 13(1): 62. doi: 10.1186/s12967-015-0412-5. |
[1] | 孙颖, 陈鑫, 杨华, 应剑, 邵丹青, 吕晓华, 肖杰, 陈志雄, 李颂, 覃俊杰, 郑斌, 高建设. 饮用金花香橼茶3个月对小样本高脂血症人群糖脂代谢的改善效果研究[J]. 茶叶科学, 2022, 42(4): 561-576. |
[2] | 田海霞, 魏珍珍, 马跃, 李颂, 戴申, 刘海新, 郝彬秀. 普洱茶立体小罐发酵加工工艺技术的应用研究[J]. 茶叶科学, 2022, 42(4): 577-587. |
[3] | 马冰凇, 王佳菜, 徐成成, 任小盈, 马存强, 周斌星. 不同仓储期普洱茶(生茶)中酚类成分差异及其对体外抗氧化能力的影响[J]. 茶叶科学, 2022, 42(1): 51-62. |
[4] | 吴文亮, 童彤, 胡瑶, 周浩, 银霞, 张曙光. 可可茶及其优势化学成分的健康功效研究进展[J]. 茶叶科学, 2021, 41(5): 593-607. |
[5] | 吕海涛, 吴文君, 廖声熙, 王子芝, 周俊宏, 李立, 崔凯. 三类云南普洱茶树的地基光谱反射特征及其差异分析[J]. 茶叶科学, 2021, 41(2): 184-192. |
[6] | 陈春晓, 楼文雨, 丁镇建, 李卓烨, 杨媛媛, 金鹏, 杜琪珍. 伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用[J]. 茶叶科学, 2020, 40(4): 528-535. |
[7] | 郑城钦, 马存强, 张正艳, 李肖宏, 吴婷婷, 周斌星. 茶叶微生物固态发酵中咖啡碱降解途径初探[J]. 茶叶科学, 2020, 40(3): 386-396. |
[8] | 徐燕, 蔡吓强, 解千金, 邰玲玲, 刘增辉. 表没食子儿茶素没食子酸酯和维生素C联用对高尿酸血症小鼠血尿酸水平的影响[J]. 茶叶科学, 2020, 40(3): 407-414. |
[9] | 方洪枫, 张慧霞, 王国红, 杨民和. 混菌发酵绿茶产脂肪酶及其对酯型儿茶素的水解作用分析[J]. 茶叶科学, 2019, 39(1): 88-97. |
[10] | 马燕, 陈立佼, 吕才有, 赵明. 普洱茶安全性毒理学评价研究概述[J]. 茶叶科学, 2018, 38(3): 221-226. |
[11] | 李亚莉, 邢倩倩, 涂青, 周红杰. 外源接种黄曲霉污染普洱茶安全性研究[J]. 茶叶科学, 2017, 37(5): 513-522. |
[12] | 王乐, 李欢, 李嘉豪, 陈暄, 黎星辉, 孙康. EGCG纳米硒的稳定性及其对硒吸收利用的影响[J]. 茶叶科学, 2017, 37(4): 373-382. |
[13] | 周盈, 黄倩, 张甜, 陈萍. TFDG对IL-1β体外诱导大鼠软骨细胞炎性损伤的保护作用研究[J]. 茶叶科学, 2017, 37(3): 290-298. |
[14] | 马存强, 周斌星, 王洪振, 王潘. 普洱茶渥堆发酵中可降解咖啡碱真菌菌株的筛选和鉴定[J]. 茶叶科学, 2017, 37(2): 211-219. |
[15] | 朱晟易, 童钰铃, 赵奕, 吕海鹏, 林智, 沈国丽, 孙婷, 宋震亚. 普洱茶对非酒精性脂肪肝大鼠肠道脂肪吸收及粘膜屏障的干预研究[J]. 茶叶科学, 2016, 36(3): 237-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|