茶叶科学 ›› 2020, Vol. 40 ›› Issue (5): 565-575.doi: 10.13305/j.cnki.jts.2020.05.001
• 综述 • 下一篇
欧阳建1,2, 周方1,2, 卢丹敏1,2, 李秀平1,2, 黄建安1,2,3, 刘仲华1,2,3,*
收稿日期:
2020-03-16
修回日期:
2020-05-17
出版日期:
2020-10-15
发布日期:
2020-10-10
通讯作者:
* larkin-liu@163.com
作者简介:
欧阳建,男,硕士研究生,主要从事茶叶深加工与功能成分利用方面的研究。
基金资助:
OUYANG Jian1,2, ZHOU Fang1,2, LU Danmin1,2, LI Xiuping1,2, HUANG Jian'an1,2,3, LIU Zhonghua1,2,3,*
Received:
2020-03-16
Revised:
2020-05-17
Online:
2020-10-15
Published:
2020-10-10
摘要: 随着人们生活水平的提高,肥胖的发病率不断攀升,已经成为严重的健康问题。茶多糖作为一种与蛋白质结合的酸性杂多糖,能够通过调节食物摄取和能量吸收、调节脂肪生成、增强抗氧化防御酶活性和减轻炎症、调节肠道菌群紊乱和维护肠道屏障完整性等不同途径有效调控肥胖。综述了近年来茶多糖调控肥胖功能及其作用机理的研究进展。
中图分类号:
欧阳建, 周方, 卢丹敏, 李秀平, 黄建安, 刘仲华. 茶多糖调控肥胖作用研究进展[J]. 茶叶科学, 2020, 40(5): 565-575. doi: 10.13305/j.cnki.jts.2020.05.001.
OUYANG Jian, ZHOU Fang, LU Danmin, LI Xiuping, HUANG Jian'an, LIU Zhonghua. Research Progress of Tea Polysaccharides in Regulating Obesity[J]. Journal of Tea Science, 2020, 40(5): 565-575. doi: 10.13305/j.cnki.jts.2020.05.001.
[1] | Breda J, Jewell J, Keller A.The importance of the World Health Organization sugar guidelines for dental health and obesity prevention[J]. Caries Research, 2019, 53: 149-152. |
[2] | Silvia B S, Ana O R, Mirjam M H, et al.Clustering of multiple energy balance-related behaviors in school children and its association with overweight and obesity: WHO European Childhood Obesity Surveillance Initiative (COSI 2015-2017)[J]. Nutrients, 2019, 11(3): 511. doi: 10.3390/nu11030511. |
[3] | Ezzati M, Bentham J, Di C M, et al.Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults[J]. Lancet, 2017, 390(10113): 2627-2642. |
[4] | 马冠生. 中国儿童肥胖报告[R]. 北京: 人民卫生出版社, 2017.Ma G S.Report on childhood obesity in china [R]. Beijing: People's Medical Publishing House, 2017. |
[5] | Guida S, Venema K.Gut microbiota and obesity: involvement of the adipose tissue[J]. Journal of Functional Foods, 2015, 14: 407-423. |
[6] | Guh D P, Zhang W, Bansback N, et al.The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis[J]. BMC Public Health, 2009, 9: 88. doi: 10.1186/1471-2458-9-88. |
[7] | Piche M E, Poirier P, Lemieux I, et al.Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update[J]. Progress Cardiovasc Diseases, 2018, 61(2): 103-113. |
[8] | Lee E Y, Yook K H.Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front Med, 2018, 12(6): 658-666. |
[9] | Chen G, Chen R, Chen D, et al.Tea polysaccharides as potential therapeutic options for metabolic diseases[J]. Journal of Agricultural and Food Chemistry, 2018, 67(19): 5350-5360. |
[10] | Guirro M, Herrero P, Costa A, et al.Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity[J]. Journal of Proteomics, 2019, 209: 103489. doi: 10.1016/j.jprot.2019.103489. |
[11] | Song D, Cheng L, Zhang X, et al.The modulatory effect and the mechanism of flavonoids on obesity[J]. Journal of Food Biochemistry, 2019, 43(8): e12954. doi: 10.1111/jfbc.12954. |
[12] | 李海珊, 刘丽乔, 聂少平. 茶多糖对小鼠肠道健康及免疫调节功能的影响[J]. 食品科学, 2017, 38(7): 187-192.Li H S, Liu L Q, Nie S P.Effects of green tea polysaccharides on intestinal health and immune regulation in mice[J]. Food Science, 2017, 38(7): 187-192. |
[13] | Yang C S, Zhang J, Zhang L, et al.Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174. |
[14] | Wu T, Guo Y, Liu R, et al.Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats[J]. Food Function, 2016, 7(5): 2469-2478. |
[15] | Nakamura M, Miura S, Takagaki A, et al.Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide[J]. International Journal Food Science Nutrients, 2017, 68(3): 321-330. |
[16] | Li S, Chen H, Wang J, et al.Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice[J]. International Journal Biological Macromolecules, 2015, 81: 967-974. |
[17] | Chen H, Wang Z, Qu Z, et al.Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4): 629-635. |
[18] | 艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019.Ai Y J.Study on the structure-activity relationship of antioxidant polysaccharides [D]. Wuhan: Huazhong Agricultural University, 2019. |
[19] | 邵淑宏. 乌龙茶多糖理化性质及抗氣化、降血糖活性研究[D]. 杭州: 浙江大学, 2015.Shao S H.Study on physical and chemical properties of dragon tea polysaccharide and its anti-gasification and hypoglycemic activity [D]. Hangzhou: Zhejiang University, 2015. |
[20] | Chen H, Zhang M, Qu Z, et al.Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis)[J]. Food Chemistry, 2008, 106(2): 559-563. |
[21] | 李娟, 刘锐, 吴涛, 等. 不同茶多糖对3T3-L1前脂肪细胞分化的抑制作用比较[J]. 食品科学, 2017, 38(21): 187-193.Li J, Liu R, Wu T, et al.Comparison of the inhibitory effects of different tea polysaccharides on the differentiation of 3T3-L1 preadipocytes[J]. Food Science, 2017, 38(21): 187-193. |
[22] | 刘海燕, 任发政, 李景明, 等. 几种植物多糖的结构特征与预防肥胖活性研究[J]. 中国食物与营养, 2019, 25(12): 44-51.Liu H Y, Ren F Z, Li J M, et al.Structural characteristics and anti-obesity efficacy of several plant polysaccharides[J]. Food and Nutrition in China, 2019, 25(12): 44-51. |
[23] | Chen G, Wang M, Xie M, et al.Evaluation of chemical property, cytotoxicity and antioxidant activity in vitro and in vivo of polysaccharides from Fuzhuan brick teas[J]. International Journal Biological Macromolecules, 2018, 116: 120-127. |
[24] | Chen H X, Zhang M, Qu Z S.Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 2256-2260. |
[25] | 韦铮, 贺燕, 郝麒麟, 等. 茶多糖在模拟胃肠消化体系的抗氧化作用研究[J]. 食品与发酵工业, 2020, 46(10): 109-117.Wei Z, He Y, Hao Q L, et al.Study on the antioxidant effect of tea polysaccharides under the conditions of simulating gastrointestinal digestion in vitro[J]. Food and Fermentation Industries, 2020, 46(10): 109-117. |
[26] | Chen G J, Xie M H, Wan P, et al.Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea[J]. Food Chemistry, 2018, 244: 331-339. |
[27] | Li W W, Wang C, Yuan G Q, et al.Physicochemical characterisation and α-amylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions[J]. International Journal of Food Science & Technology, 2018, 53(2): 423-429. |
[28] | Fernández J, Redondo-B S, Gutiérrez-del R I, et al. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review[J]. Journal of Functional Foods, 2016, 25: 511-522. |
[29] | 张高帆, 陈萍, 徐思绮, 等. 茶多糖对四氧嘧啶模型小鼠的降糖作用及其体内分布规律研究[J]. 营养学报, 2015, 37(4): 384-388.Zhang G F, Chen P, Xu S Q, et al.Hypoglycemic effect of tea polysaccharide on alloxan model mice and its in vivo research on distribution law[J]. Journal of Nutrition, 2015, 37(4): 384-388. |
[30] | Sánchez J, Priego T, Palou M, et al.Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life[J]. Endocrinology, 2008, 149(2): 733-740. |
[31] | 杨志秋, 詹莉莉, 傅正伟. 脂肪酶抑制剂应用于抗肥胖的研究进展[J]. 现代生物医学进展, 2011, 11(21): 4178-4181.Yang Z Q, Zhan L L, Fu Z W.Recent advances of lipase inhibitor in the application of anti-obesity[J]. Progress in Modern Biomedicine, 2011, 11(21): 4178-4181. |
[32] | 李祥龙, 李晓梅, 杨煦, 等. 黑茶茶褐素与茶多糖对脂肪酶的抑制作用[J]. 食品与机械, 2018, 34(3): 27-31, 58.Li X L, Li X M, Yang X, et al.Study of inhibition of black tea theabrownin and tea polysaccharides on lipase[J]. Food and Machinery, 2018, 34(3): 27-31, 58. |
[33] | 舒婷, 肖畅, 何慧, 等. 青砖茶粗多糖抑制α-葡萄糖苷酶活性的研究[J]. 食品科技, 2019, 44(3): 194-199.Shu T, Xiao C, He H, et al.Inhibitory effects of crude polysaccharide of green brick tea on α-glucosidase activity[J]. Food Science and Technology, 2019, 44(3): 194-199. |
[34] | 和兴萍, 罗燕, 李雪, 等. 几种降脂减肥实验动物模型的建立与比较[J]. 中华中医药学刊, 2017, 35: 1747-1751.He X P, Luo Y, Li X, et al.Comparison of several kinds of lipid-Lowering diet experimental animal model[J]. Chinese Journal of Traditional Chinese Medicine, 2017, 35: 1747-1751. |
[35] | 陈粉粉, 郭爱伟, 周杰珑, 等. ICR小鼠肥胖模型的建立以及肥胖指标和脂肪组织形态学比较[J]. 安徽农业科学, 2012, 40(5): 2720-2073.Chen F F, Guo A W, Zhou J L, et al.Establishment of the obesity model of ICR mice and the comparison of the obesity index and morphology of adipose tissue[J]. Journal of Anhui Agri, 2012, 40(5): 2720-2073. |
[36] | Ren D, Hu Y, Luo Y, et al.Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice[J]. Food Function, 2015, 6(10): 3342-3350. |
[37] | 李清亮. 黄大茶茶多糖对饲喂高脂日粮小鼠肠道菌群的调节作用[D]. 合肥: 安徽农业大学, 2018.Li Q L.Polysacchardies in Large Yellow tea modulate gut microbiome in HFD fed mice [D]. Hefei: Anhui Agricultural University, 2018. |
[38] | Mao Y, Wei B, Teng J, et al.Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia[J]. International Journal of Food Science & Technology, 2018, 53(3): 599-607. |
[39] | 郭郁, 吴涛, 刘锐, 等. 红茶提取物减肥作用研究[J]. 现代食品科技, 2017, 33(2): 16-21.Guo Y, Wu T, Liu R, et al.Study on the weight-loss effect of black tea extracts[J]. Modern Food Science and Technology, 2017, 33(2): 16-21. |
[40] | 吴文华. 洱茶调节血脂功能评价及其生化机理的研究[D] . 重庆: 西南农业大学, 2003.Wu W H.Functional appraisal of blood lipid adjusted by Puer tea and study on its physiochemical mechanism [D]. Chongqing: Southwest Agricultural University, 2003. |
[41] | Olsen M K, Johannessen H, Cassie N, et al.Steady-state energy balance in animal models of obesity and weight loss[J]. Scandinavian Journal Gastroenterology, 2017, 52(4): 442-449. |
[42] | Ahima R S, Antwi D A.Brain regulation of appetite and satiety[J]. Endocrinology and Metabolism Clinics of North America, 2008, 37(4): 811-823. |
[43] | Xu Y, Zhang M, Wu T, et al.The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet[J]. Food Function, 2015, 6(1): 297-304. |
[44] | Maniadakis N, Kapaki V, Damianidi L, et al.A systematic review of the effectiveness of taxes on nonalcoholic beverages and high-in-fat foods as a means to prevent obesity trends[J]. ClinicoEconomics and Outcomes Research, 2013, 5: 519-543. |
[45] | Huang J, Wang Y, Xie Z, et al.The anti-obesity effects of green tea in human intervention and basic molecular studies[J]. European Journal Clinical Nutrition, 2014, 68(10): 1075-1087. |
[46] | Chung J O, Yoo S H, Lee Y E, et al.Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch[J]. Food & Function, 2019, 10(2): 746-753. |
[47] | Saely C H, Geiger K, Drexel H.Brown versus white adipose tissue: a mini-review[J]. Gerontology, 2012, 58(1): 15-23. |
[48] | Frühbeck G, Becerril S, Sáinz N, et al.BAT: A new target for human obesity?[J]. Trends in Pharmacological Sciences, 2009, 30(8): 387-396. |
[49] | Ferranti S, Mozaffarian D.The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences[J]. Clinical Chemistry, 2008, 54(6): 945-955. |
[50] | Hammad S S, Eck P, Sihag J, et al.Common variants in lipid metabolism-related genes associate with fat mass changes in response to dietary monounsaturated fatty acids in adults with abdominal obesity[J]. The Journal of Nutrition, 2019, 149(10): 1749-1756. |
[51] | Bazhan N M, Baklanov A V, Piskunova J V, et al.Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice[J]. Physiological Reports, 2017, 5(19): e13445. doi: 10.14814/phy2.13445. |
[52] | Catalán V, Rodríguez A, Ramírez B, et al.Association of increased Visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity[J]. Nutrition Metabolism & Cardiovascular Diseases, 2017, 21(4): 245-253. |
[53] | Chen G J, Xie M H, Wan P, et al.Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2783-2795. |
[54] | Manna P, Jain S K.Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies[J]. Metabolic Syndrome And Related Disorders, 2015, 13(10): 423-444. |
[55] | Fernandez S A, Madrigal S E, Bautista M, et al.Inflammation, oxidative stress, and obesity[J]. International Journal of Molecular Sciences, 2011, 12(5): 3117-3132. |
[56] | Savini I, Catani M V, Evangelista D, et al.Obesity-associated oxidative stress: strategies finalized to improve redox state[J]. International Journal of Molecular Sciences, 2013, 14(5): 10497-10538. |
[57] | Wang J, Liu W, Chen Z, et al.Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomed Pharmacother, 2017, 90: 160-170. |
[58] | Wang Y, Zhao Y, Andrae M K, et al.Tea polysaccharides as food antioxidants: an old woman's tale?[J]. Food Chemistry, 2013, 138(2/3): 1923-1927. |
[59] | Zhang L, Gui S, Liang Z, et al.Musca domestica cecropin (Mdc) alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment: associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora[J]. Frontiers in Microbiology, 2019, 10: 522. doi: 10.3389/fmicb.2019.00522. |
[60] | Musso G, Gambino R, Cassader M.Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J]. The Annual Review of Medicine, 2011, 62: 361-380. |
[61] | Huang F, Zheng X, Ma X, et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nature Communications, 2019, 10(1): 4971. doi: 10.1038/s41467-019-12896-x. |
[62] | Rothschild D, Weissbrod O, Barkan E, et al.Environment dominates over host genetics in shaping human gutmicrobiota[J]. Nature, 2018, 555: 210-215. |
[63] | Rosenbaum M, Knight R, Leibel R L.The gut microbiota in human energy homeostasis and obesity[J]. Trends Endocrinol Metab, 2015, 26(9): 493-501. |
[64] | Bernardi S, Del Bo C, Marino M, et al.Polyphenols and intestinal permeability: rationale and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1816-1829. |
[65] | Dugas L R, Lie L, Plange-Rhule J, et al.Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol[J]. BMC Public Health, 2018, 18(1): 978. doi: 10.1186/s12889-018-5879-6. |
[66] | Tremaroli V, Backhed F.Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249. |
[67] | Petriz B A, Castro A P, Almeida J A, et al.Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats[J]. BMC Genomics, 2014, 15: 511. doi: 10.1186/1471-2164-15-511. |
[68] | Queipo M I, Seoane L M, Murri M, et al.Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels[J]. Plos One, 2013, 8(5): e65465. doi: 10.1371/journal.pone.0065465. |
[69] | Wahlström A, Sayin S I, Marschall H U, et al.Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50. |
[70] | Chen H, Qu, Z, Fu L L, et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea[J]. Journal of Food Science, 2009, 74(6): 469474. doi: 10.1111/j.1750-3841.2009.01231.x. |
[71] | Chen H X, Zhang M, Qu Z S, et al.Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia sinensis)[J]. Food Chemistry, 2008, 106: 559-563. |
[72] | Du L L, Fu Q Y, Xiang L P, et al.Tea polysaccharides and their bioactivities[J]. Molecules, 2016, 21(11): 1449. doi: 10.3390/molecules21111449. |
[73] | Wang Y F, Liu Y Y, Huo J L, et al.Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides[J]. International Journal Biological Macromolecules, 2013, 62: 714-719. |
[74] | Zhang X, Chen H X, Zhang N, et al.Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea[J]. Food Research International, 2013, 53: 726-731. |
[75] | Chen G, Yuan Q, Saeeduddin M, et al.Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678. |
[1] | 徐长霞, 罗宗秀, 马龙. 溴虫氟苯双酰胺影响灰茶尺蠖成虫合成与识别性信息素的能力[J]. 茶叶科学, 2024, 44(4): 618-626. |
[2] | 万丽玮, 曾鸿哲, 彭丽媛, 文帅, 刘昌伟, 鲍肃都, 安勤, 黄建安, 刘仲华. EGCG对高脂饮食GK大鼠白色脂肪米色化的诱导作用与机制研究[J]. 茶叶科学, 2024, 44(1): 119-132. |
[3] | 李焱, 林泳峰, 刘文美, 邹泽华, 刘光明, 刘庆梅. 茶多糖研究的现状与发展趋势[J]. 茶叶科学, 2023, 43(4): 447-459. |
[4] | 李佳思, 刘迎庆, 张永恒, 张迎澳, 肖烨子, 刘露, 余有本. 茶树CsNCED2启动子互作转录因子筛选及在非生物胁迫中的响应[J]. 茶叶科学, 2023, 43(3): 325-334. |
[5] | 周继红, 陈蔚, 丁乐佳, 王岳飞. EGCG改善高果糖饮食小鼠代谢紊乱的作用与机制研究[J]. 茶叶科学, 2023, 43(3): 399-410. |
[6] | 马园园, 曹青青, 高一舟, 刘钰懿, 邓锶涵, 尹军峰, 许勇泉. 绿茶苦味研究进展[J]. 茶叶科学, 2023, 43(1): 1-16. |
[7] | 盖淑杰, 王奕雄, 李兰, 刘硕谦, 李银花, 程孝, 夏茂, 刘仲华, 周智. 茶树生长光调控研究进展[J]. 茶叶科学, 2022, 42(6): 753-767. |
[8] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[9] | 史凡, 黄泓晶, 陈燕婷, 陈李林. 间套作功能植物对茶园生态系统服务功能的影响[J]. 茶叶科学, 2022, 42(2): 151-168. |
[10] | 任倩倩, 庄明珠, 蔡晓明, 边磊, 罗宗秀, 李兆群, 尤民生, 陈宗懋, 金珊. 小贯小绿叶蝉取食诱导抗、感茶树品种挥发物的释放[J]. 茶叶科学, 2020, 40(6): 795-806. |
[11] | 郑蓉蓉, 刘路星, 马妍丽, 王自帅, 陈少游, 何敦春, 谢联辉. 基于Logistic-ISM模型的茶农采纳病虫生态调控技术的影响因素及层次结构分析[J]. 茶叶科学, 2020, 40(5): 696-706. |
[12] | 刘丹奇, 任发政, 李景明, 侯彩云. 几种茶多糖降血糖活性的研究[J]. 茶叶科学, 2019, 39(6): 652-660. |
[13] | 潘联云, 鹿颜, 龚雨顺. 茶叶调节SREBPs的降脂作用[J]. 茶叶科学, 2018, 38(1): 102-111. |
[14] | 郑丽, 侯彩云, 任发政. 白茶寿眉预防小鼠肥胖作用研究及安全性评价[J]. 茶叶科学, 2017, 37(6): 586-596. |
[15] | 李梅, 陈林波, 田易萍, 夏丽飞, 宋维希, 梁名志, 江昌俊. 雌蕊缺失茶树花3个发育期的数字基因表达谱分析[J]. 茶叶科学, 2017, 37(1): 97-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|