[1] Pineda A, Zheng S J, Loon J J A V, et al. Helping plants to deal with insects: the role of beneficial soil-borne microbes[J]. Trends in Plant Science, 2010, 15(9): 507-514. [2] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283. [3] 伍丽. 不同品种茶树根际微生物的研究[D]. 杨凌: 西北农林科技大学, 2010. Wu L.The study of the rhizosphere microorganism of varieties of tea [D]. Yangling: Northwest A&F University, 2010. [4] Bending G D, Turner M K, Rayns F, et al.Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology & Biochemistry, 2004, 36(11): 1785-1792. [5] Chang Y J, Hussain A K, Stephen J R, et al.Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia-oxidizer communities in soil microcosms[J]. Environmental Toxicology and Chemistry, 2001, 20(11): 2462-2468. [6] Helgason T, Daniell T J, Husband R, et al.Ploughing up the wood-wide web?[J]. Nature, 1998, 394(6692): 431. doi: 10.1038/28764. [7] Bais H P, Weir T L, Perry L G, et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1): 233-266. [8] Liu J, Guo C, Chen Z L, et al.Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress[J]. Emirates Journal of Food and Agriculture, 2016, 28(4): 251-256. [9] 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6): 10-20. Xue Y L, Li C Y, Wang C R, et al.Mechanisms of phosphorous uptake from soils by arbuscular mycorrhizal fungi[J]. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. [10] Abbott L K, Murphy D V.Soil biological fertility[M]. Dordrecht: Springer, 2007: 129-163. [11] Liu D, Liu H B, Li X H, et al.Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice[J]. Physiologia Plantarum, 2014, 152(3): 486-500. [12] Egamberdieva D.Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum, 2009, 31(4): 861-864. [13] Xu J, Wang W, Sun J, et al.Involvement of auxin and nitric oxide in plant Cd-stress responses[J]. Plant and Soil, 2011, 346(1/2): 107-119. [14] Santhanam R, Luu V T, Weinhold A, et al.Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): E5013-E5020. [15] Bulgarelli D, Schlaeppi K, Spaepen S, et al.Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1): 807-838. [16] 刘家女, 房晓婷, 王文静. 植物修复及强化调控系统根际土壤微生物研究综述[J]. 安全与环境学报, 2015, 15(1): 222-227. Liu J N, Fang X T, Wang W J.Review on microorganisms in phytoremediation and the corresponding measures for its enhanced regulation[J]. Journal of Safety and Environment, 2015, 15(1): 222-227. [17] Nele W, Daniel V D L, Safiyh T, et al. Phytoremediation: plant-endophyte partnerships take the challenge[J]. Current Opinion in Biotechnology, 2009, 20(2): 248-254. [18] Miransari M.Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals[J]. Biotechnology Advances, 2011, 29(6): 645-653. [19] Berndt G.Biological substitutes for pesticides[J]. Trends in Biotechnology, 2002, 20(8): 338-343. [20] Parke J L, Gurian-Sherman D.Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains[J]. Annual Review of Phytopathology, 2001, 39(1): 225-258. [21] 陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38(2): 113-121. Lu Y H, Zhang F S.The advances in rhizosphere microbiology[J]. Soils, 2006, 38(2): 113-121. [22] Hart M.Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004, 58(2): 169-188. [23] 李国娟, 柳纪省, 李宝玉, 等. 微生物分离与培养的新方法与新技术[J]. 畜牧兽医科技信息, 2009(11): 10-11. Li G J, Liu J S, Li B Y, et al.New methods and technologies for microbial isolation and cultivation[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2009(11): 10-11. [24] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法:从培养到非培养[J]. 生态学报, 2012, 32(14): 4421-4433. Liu G H, Ye Z F, Wu W Z.Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 2012, 32(14): 4421-4433. [25] Torsvik L, Ovreas V.Microbial diversity and function in soil: from genes to ecosystems[J]. Current Opinion in Microbiology, 2002, 5(3): 240-245. [26] Torsvik V, Sørheim R, Goksøyr J.Total bacterial diversity in soil and sediment communities: a review[J]. Journal of Industrial Microbiology, 1996, 17: 170-178. [27] 张于光, 李迪强, 肖启明. 分子生态学技术及其在环境微生物研究中的应用[J]. 微生物学杂志, 2005, 25(5): 91-94. Zhang Y G, Li D Q, Xiao Q M.Molecular ecology technology and its application in environmental microbiology study[J]. Journal of Microbiology, 2005, 25(5): 91-94. [28] 谢光新, 张荣先, 黄雪飞, 等. 不同生长年限茶树根际微生物分布的差异[J]. 湖北农业科学, 2012(15): 34-36. Xie G X, Zhang R X, Huang X F, et al.Distribution of root and rhizosphere microorganism in tea tree at different ages[J]. Hubei Agricultural Sciences, 2012(15): 34-36. [29] Pandey A, Palni L M.Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes[J]. Microbiological Research, 1997, 152(4): 359-365. [30] Pandey A, Palni L M, Bisht D.Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions[J]. Microbiological Research, 2001, 156(4): 377-382. [31] 成泽艳. 茶树根际微生物区系分析及生物菌肥的初步研制[D]. 成都: 四川农业大学, 2004: 21. Chen Z Y.Study on rhizosphere microflora and biofertilizer of tea [D]. Chengdu: Sichuan Agricultural University, 2004: 21. [32] 许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132. Xu G, Wang M J, Deng B W, et al.Bacterial diversity and community structure of rhizosphere soil of tea plants in different years of planting[J]. Biotechnology Bulletin, 2020, 36(3): 124-132. [33] 赵兴丽, 卯婷婷, 张金峰, 等. 不同品种茶树根际土壤真菌群落多样性及结构特征[J]. 茶叶通讯, 2019, 46(3): 284-290. Zhao X L, Mao T T, Zhang J F, et al.Diversity and structural characteristics of fungi community in rhizospheres soil of different varieties of Camellia sinensis[J]. Journal of Tea Communication, 2019, 46(3): 284-290. [34] 王贵卫. 茶树根际环境因子—细菌种群及功能相关性探究[D]. 杭州: 浙江理工大学, 2018. Wang G W.Correlation between microenvironments and bacterial communities and function in the rhizosphere Camellia sinensis [D]. Hangzhou: Zhejiang Sci-Tech University, 2018. [35] 田永辉. 不同土壤对茶树根际固氮微生物的影响[J]. 茶叶通讯, 1998(4): 21-22. Tian Y H.Effects of different soils on nitrogen-fixing microorganisms in tea rhizosphere[J]. Journal of Tea Communication, 1998(4): 21-22. [36] 卢开阳. 云南11个茶山的大叶种茶树根际土壤微生物遗传多样性研究[D]. 昆明: 云南师范大学, 2016. Lu K Y.Study on microbial genetic diversity in large leaf tea rhizosphere soil at 11mountains from Yunnan province [D]. Kunming: Yunnan Normal University, 2016. [37] 梁月荣, 刘祖生, 陆建良, 等. 茶树根际土壤抗酸铝真菌ALF-1(Neurospora sp.)对酸性土壤pH的影响[J]. 茶叶科学, 1999, 19(2): 115-118. Liang Y R, Liu Z S, Lu J L, et al.Effect of aluminum resistant fungus ALF 1 (Neurospora sp.) from tea rhizospheric soil on the pH value of acidic soil[J]. Journal of Tea Science, 1999, 19(2): 115-118. [38] Cakmakci R, Donmez M F, Erturk Y, et al.Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils[J]. Plant and Soil, 2010, 332(1/2): 299-318. [39] Sarkar S, Seenivasan S, Asir R P S. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere[J]. Journal of Hazardous Materials, 2010, 174(1/3): 295-298. [40] Saikia R, Sarma R K, Yadav A, et al.Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere[J]. Current Microbiology, 2011, 62(2): 434-444. [41] 高旭晖. 茶树根际微生物与根际效应[J]. 茶叶通讯, 2000(1): 35-38. Gao X H.Rhizosphere microorganisms and effects of tea rhizosphere[J]. Journal of Tea Communication, 2000(1): 35-38. [42] Thakur R, Sharma K C, Gulati A, et al.Stress-tolerant Viridibacillus arenosi strain IHB B 7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant[J]. Indian Journal of Microbiology, 2017, 57(2): 195-200. [43] Purkayastha G D, Mangar P, Saha A, et al.Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea[J]. Plos One, 2018, 13(2): e0191761. doi: 10.1371/journal.pone.0191761. [44] Wu Q S, Shao Y D, Gao X B, et al.Characterization of AMF-diversity of endosphere versus rhizosphere of tea (Camellia sinensis) crops[J]. Indian Journal of Agricultural Sciences, 2019, 89(2): 348-352. [45] 何斐, 李冬花, 卜凡. 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020, 40(3): 319-327. He F, Li D H, Pu F.Analysis of Arbuscular mycorrhizal fungal community structure in the rhizosphere of different tea cultivars[J]. Journal of Tea Science, 2020, 40(3): 319-327. [46] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology and Fertility of Soils, 2008, 44(3): 491-500. [47] Sharma D, Kayang H.Effects of arbuscular mycorrhizal fungi (AMF) on Camellia sinensis (L.) O. Kuntze under greenhouse conditions[J]. Journal of Experimental Biology and Agricultural Sciences, 2017, 5(2): 235-241. [48] Shao Y D, Zhang D J, Hu X C, et al.Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants[J]. Plant Soil Environ, 2018, 64(6): 283-289. [49] 许平辉. 丛枝菌根真菌(AMF)对水分胁迫下茶树生长及抗旱性的影响[D]. 杨凌: 西北农林科技大学, 2017. Xu P H.Effects of arbusular mycorrhizal fungi on growth and drought resistance of tea plant under water stress [D]. Yangling: Northwest A&F University, 2017. [50] 柳洁, 肖斌, 王丽霞, 等. 丛枝菌根真菌对茶树耐盐性的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3): 220-225. Liu J, Xiao B, Wang L X.Influence of AMF on salt tolerance of tea[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(3): 220-225. [51] Hu L, Robert C A M, Cadot S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738-2850. [52] Mendes R, Garbeva P, Raaijmakers J M.The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. Fems Microbiology Reviews, 2013, 37(5): 634-663. [53] 刘红艳, 邓欣. 我国茶树根际微生物研究现状及展望[J]. 茶叶通讯, 2003(4): 14-18. Liu H Y, Deng X.Research status and prospect of tea rhizosphere microorganisms in China[J]. Journal of Tea Communication, 2003(4): 14-18. [54] Li Y, Li Z, Arafat Y, et al.Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization[J]. European Journal of Soil Biology, 2017, 81: 48-54. [1] 杨扬, 刘炳君, 房江育, 等. 不同植茶年龄茶树根际与非根际土壤微生物及酶活性特征研究[J]. 中国农学通报, 2011, 27(27): 118-121. Yang Y, Liu B J, Fang J Y, et al.The Study on characteristics of microbes and enzyme activity in rhizosphere and out-rhizosphere soil of tea garden at various ages[J]. Chinese Agricultural Science Bulletin, 2011, 27(27): 118-121. [55] 黄祖法, 温琼英. 茶树根表微生物的初步调查[J]. 中国茶叶, 1982(6): 9-11. Huang Z F, Wen Q Y.Preliminary investigation of microorganisms on tea root surface[J]. China Tea, 1982(6): 9-11. [56] 田永辉. 不同树龄茶树根际固氮菌组成及多样性研究[J]. 福建茶叶, 2000(3): 19-21. Tian Y H.Composition and diversity of nitrogen-fixing bacteria in the rhizosphere of tea of different ages[J]. Tea in Fujian, 2000(3): 19-21. [57] Lin W W, Lin M H, Zhou H Y, et al.The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. Plos One, 2019, 14(5): e0217018. doi: 10.1371/journal.pone.0217018. [58] 罗毅, 苏有健, 张永利, 等. 不同施肥处理对茶树根际细菌多样性的影响[J]. 中国农学通报, 2014, 30(25): 177-183. Luo Y, Su Y J, Zhang Y L, et al.Effect of fertilizer on tea plant rhizosphere bacteria diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(25): 177-183. [59] 伍丽, 余有本, 周天山, 等. 茶树根际土壤因子对根际微生物数量的影响[J]. 西北农业学报, 2011, 20(4): 159-163. W L, Yu Y B, Zhou T S, et al. Effects of soil factors on the distributions of tea rhizosphere microorganisms[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(4): 159-163. [60] 刘红艳, 张亚莲, 邓欣, 等. 不同栽培方式有机茶园土壤微生物群落组成、活性及脲酶活性比较[J]. 福建茶叶, 2007(4): 20-21. Liu H Y, Zhang Y L, Deng X, et al.Comparison of soil microbial community composition, activity and urease activity in organic tea gardens with different cultivation methods[J]. Tea in Fujian, 2007(4): 20-21. [61] Buée M, Boer W D, Martin F, et al.The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors[J]. Plant & Soil, 2009, 321(1/2): 189-212. [62] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283. [63] Beckers B, Michiel O D B, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2. [64] Fitzpatrick C R, Copeland J, Wang P W, et al.Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1157-E1165. [65] Raaijmakers J M, Paulitz T C, Steinberg C, et al.The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant & Soil, 2009, 321(1/2): 341-361. |