[1] Claire L, Charles A, Sebastien A, et al.Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis[J]. The Plant Cell, 2004, 16(8): 2089-2103. [2] Small I D, Peeters N.The PPR motif-a TPR-related motif prevalent in plant organellar proteins[J]. Trends Biochem Sci, 2000, 25(2): 46-47. [3] Dipnarayan S, Prasad A M, Ramamurthy S.Pentatricopeptide repeat proteins and their emerging roles in plants[J]. Plant Physiology and Biochemistry, 2007, 45(8): 521-534. [4] Barkan A, Waller M, Nolasco M.A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms[J]. EMBO J, 1994, 13(13): 3170-3181. [5] Sam M.An overview of pentatricopeptide repeat proteins and their applications[J]. Bochimine, 2015, 113: 93-99. [6] Schmitz-Linneweber C, Small I.Pentatricopeptide repeat proteins: a socket for organelle gene expression[J]. Trends Plant Sci, 2008, 13(12): 663-670. [7] 陈龙. 水稻淡绿叶基因PGL12的克隆与功能分析[D]. 武汉: 华中农业大学, 2019: 40-42. Chen L.Cloning and functional analysis of PALE-GREEN LEAF 12 in rice [D]. Wuhan: Huazhong Agricultural University, 2019: 40-42. [8] 陈璐. 水稻低温条件下叶绿体发育必需基因TCM8的克隆与功能分析[D]. 上海: 上海师范大学, 2019: 27-29. Chen L.Cloning and functional analysis of essential gene TCM8 for chloroplast development under low temperature conditions in rice (Oryza sativa L.) [D]. Shanghai: Shanghai Normal University, 2019: 27-29. [9] 葛生珍. 水稻黄化突变体xnt7的生理特性和基因精细定位[D]. 重庆: 西南大学, 2014: 28-33. Ge S Z.Physiological characteristics of a xanthic mutant and fine-mapping of its related gene xnt7 in rice [D]. Chongqing: Southwest University, 2014: 28-33. [10] 简磊, 王仲康, 曾冬冬, 等. 水稻白化转绿突变体albg的鉴定和基因精细定位[J]. 核农学报, 2017, 31(12): 2289-2297. Jian L, Wang Z K, Zeng D D, et al.Characterization and fine mapping of a green-revertible albino (albg) mutant in rice[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2289-2297. [11] 尚丽娜, 陈新龙, 米胜南, 等. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675. Shang L N, Chen X L, Mi S N, et al.Phenotypic identification and gene mapping of temperature-sensitive green revertible albino mutant tsa2 in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2019, 45(5): 662-675. [12] 何鹏, 张丽华, 牟亚楠, 等. 棉花叶片黄化基因GhYL1的筛选、鉴定及功能分析[C]//中国农学会棉花分会2017年年会暨第九次会员代表大会论文汇编. 安阳: 棉花学报, 2017: 38. He P, Zhang L H, Mou Y N, et al.Dentification and functional analysis of yellow variegated leaf gene GhYL1 in cotton[C]//2017 Annual Meeting of the Cotton Branch of Chinese Agricultural Association and the Ninth Member Congress. Anyang: Cotton Science, 2017: 38. [13] 袁玲. 白叶1号阶段性返白过程中差异表达基因的分离及部分基因全长cDNA克隆[D]. 长沙: 湖南农业大学, 2012: 29-39. Yuan L.Separation of differentially expressed genes and full length cDNA cloning of selective genes during periodic albinism in Anjibaicha(Camellia sinensis) [D]. Changsha: Hunan Agricultural University, 2012: 29-39. [14] Punta M, Coggill P C, Eberhardt R Y.The pfam protein families database[J]. Nucleic Acids Research, 2012, 40(1): 290-301. [15] Simon C P, Aurelien L, Sean R.E, et al. HMMER web server: 2018 update[J]. Nucleic Acids Research, 2018, 46: 200-204. [16] Finn R D, Clements J, Eddy SR.HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Res, 2011, 39: 29-37. [17] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877. [18] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. PNAS, 2018, 115(18): E4151-E4158. [19] Chen J D, Zheng C, Ma J Q, et al.The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization ebent in tea plant[J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2. [20] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 18 diverse accessions provide insights into genome evolution and adaptation of tea plants[J]. Molecular Plant, 2020, 13(6/7): 1013-1026. [21] Zhang Q J, Li W, Li K, et al.The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons to drive genome size evolution[J]. Molecular Plant, 2020, 13(7): 935-938. [22] 韦雪芳, 王冬梅, 刘思, 等. 信号肽及其在蛋白质表达中的应用[J]. 生物技术通报, 2006(6): 38-42. Wei X F, Wang D M, Liu S, et al.Signal sequence and its application to protein expression[J]. Journal of Biotechnology, 2006(6): 38-42. [23] 谭晖, 官春云. 甘蓝型油菜PPR家族生物信息学分析与新疆野生油菜候选育性基因克隆[J]. 作物研究, 2017, 31(3): 246-255. Tan H, Guan C Y.Bioinformatics analysis of PPR family in Brassica napus L. and cloning of candidate restorer gene of Xinjiang wild rapeseed[J]. Crop Research, 2006, 31(3): 246-255. [24] Nicholas O, Mitsuru H, Charles A, et al.On the expansion of the pentatricopeptide repeat gene family in plants[J]. Society of Molecular Biology and Evolution, 2008, 25: 1120-1128. [25] 丁安明. 番茄与烟草PPR基因家族分析及育性相关基因功能研究[D]. 北京: 中国农业科学院, 2014. Ding A M.Identification of PPR gene family in N.tomentosiformis and tomato and function analysis of Rf-related genes in tobacco [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. [26] Xing H T, Fu X K, Yang C.et al.Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses[J]. Scientific Reports, 2018, 8: 2817. doi: 10.1038/s41598-018-21269-1. [27] 郭彩娟, 公杰, 刘永杰, 等. 全基因组小麦PPR基因家族鉴定及表达分析[J]. 生物技术通报, 2019, 35(8): 1-8. Guo C J, Gong J, Liu Y J, et al.Genome-wide bioinformatics identification of PPR gene family and expression profiles analysis in wheat[J]. Journal of Biotechnology, 2019, 35(8): 1-8. [28] Liu J M, Xu Z S, Lu P P, et al.Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet[J]. BMC Genomics. 2016, 17(1): 840. doi: 10.1186/s12864-016-3184-2. [29] Chen G, Zou Y, Hu J, et al.Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments[J]. BMC Genomics, 2018, 19(1): 720. doi: 10.1186/s12864-018-5088-9. [30] 倪晨子. 水稻PPR基因OsPGL1功能的初步分析[D]. 武汉: 武汉大学, 2017: 38-39. Ni C Z.An initial function analysis of the PPR gene OsPGL1 in rice (Oryza sativa L.) [D]. Wuhan: Wuhan University, 2017: 38-39. [31] 高媛媛. 水稻PPR蛋白基因TCD34的克隆与功能分析[D]. 上海: 上海师范大学, 2020: 27-36. Gao Y Y.Cloning and functional analysis of PPR gene TCD34 in rice (Oryza sativa L.) [D]. Shanghai: Shanghai Normal University, 2020: 27-36. [32] Du L, Zhang J, Qu S F, et al.The pentratricopeptide repeat protein pigment-defective mutant2 is involved in the regulation of chloroplast development and chloroplast gene expression in Arabidopsis[J]. Plant and Cell Physiology, 2017, 4(58): 747-759. [33] Cushing D A, Forsthoefel N R, Gestaut D R, et al.Arabidopsis emb175 and other ppr knockout mutants reveal essential roles for pentatricopeptide repeat (PPR) proteins in plant embryogenesis[J]. Planta, 2005, 221: 424-436. [34] Karin M, Susanne F, Takahiro N, et al.HCF152, an Arabidopsis RNA Binding Pentatricopeptide Repeat Protein Involved in the Processing of Chloroplast psbB-psbT-psbH-petB-petD RNAs[J]. Plant Cell, 2003, 15(6): 1480-1495. |