[1] 唐一春, 杨盛美, 季鹏章, 等. 云南野生茶树资源的多样性、利用价值及其保护研究[J]. 西南农业学报, 2009, 22(2): 518-521. Tang Y C, Yang S M, Ji P Z, et al.Study on the diversity, utilization and protection of wild tea germplasm in Yunnan[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(2): 518-521. [2] 李晓丽, 何勇, 裘正军. 一种基于可见-近红外光谱快速鉴别茶叶品种的新方法[J]. 光谱学与光谱分析, 2007, 27(2): 279-282. Li X L, He Y, Qiu Z J.Application PCA-ANN method to fast discrimination of tea varieties using visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(2): 279-282. [3] 李敏. 乐山茶叶的近红外光谱分类识别[J]. 红外, 2015, 36(5): 43-46, 48. Li M.Classification and identification of Leshan tea using near infrared spectroscopy[J]. Infrared, 2015, 36(5): 43-46, 48. [4] Ning J, Sun J, Li S, et al.Classification of five Chinese tea categories with different fermentation degrees using visible and near infrared hyperspectral imaging[J]. International Journal of Food Properties, 2017, 20(s2): 1515-1522. [5] Tu Y, Bian M, Wan Y, et al.Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV[J]. Peer J, 2018, 6: e4858. doi: 10.7717/peerj.4858. [6] 孙俊, 靳海涛, 武小红, 等. 基于低秩自动编码器及高光谱图像的茶叶品种鉴别[J]. 农业机械学报, 2018, 49(8): 316-323. Sun J, Jin H T, Wu X H, et al.Tea variety identification based on low-rank stacked auto-encoder and hyperspectral image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 316-323. [7] 冯呈艳, 余志, 陈玉琼, 等. 茶鲜叶反射光谱和色差特性及其应用初探[J]. 中国茶叶加工, 2019(2): 33-39. Feng C Y, Yu Z, Chen Y Q, et al.Study on the reflectance spectrum and chromatic aberration property of fresh tea leaves and its application[J]. China Tea Processing, 2019(2): 33-39. [8] 艾施荣, 吴瑞梅, 吴彦红, 等. 利用高光谱图像技术鉴别庐山云雾茶产地[J]. 江西农业大学学报, 2014, 36(2): 428-433. Ai S R, Wu R M, Wu Y H, et al.Identification of geographical origins of Lushan mist tea by hyper-spectral imaging technology[J]. Acta Agriculturae Universitis Jiangxiensis, 2014, 36(2): 428-433. [9] 刘玲. 普洱茶特征风味成分分析[D]. 重庆: 西南大学, 2010. Liu L.The analysis on characteristic flavor components of Pu-erh tea [D]. Chongqing: Southwest University, 2010. [10] 黄桂枢. “世界茶源”普洱市茶文化在“一带一路”战略中的价值和作用[J]. 农业考古, 2016, 144(2): 260-262. Huang G S.The value and role of tea culture of "world tea sources" in Pu’er city in the "Belt and Road" strategy[J]. Agricultural archaeology, 2016, 144(2): 260-262. [11] 徐光彩, 庞勇, 李增元, 等. 小兴安岭主要树种冠层光谱季相变化研究[J]. 光谱学与光谱分析, 2013, 33(12): 3303-3307. Xu G C, Pang Y, Li Z Y, et al.The changes of forest canopy spectral reflectance with seasons in Xiaoxing’anling[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3303-3307. [12] 吴伟斌, 李佳雨, 张震邦, 等. 基于高光谱图像的茶树LAI与氮含量反演[J]. 农业工程学报, 2018, 34(3): 195-201. Wu W B, Li J Y, Zhang Z B, et al.Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image[J]. Chinese Society of Agricultural Engineering, 2018, 34(3): 195-201. [13] 李翠玲, 姜凯, 冯青春, 等. 基于叶绿素荧光光谱和反射光谱的甜瓜种子品种鉴别[J]. 光谱学与光谱分析, 2018, 38(1): 151-156. Li C L, Jiang K, Feng Q C, et al.Melon seeds variety identification based on chlorophyll fluorescence spectrum and reflectance spectrum[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 151-156. [14] 陈佼, 张丽. 天山北坡草地盖度高光谱遥感估算[J]. 草业科学, 2017, 34(1): 30-39. Chen J, Zhang L.Estimating grassland coverage based on hyperspectral remote sensing in the northern Tianshan Mountains[J]. Pratacultural Science, 2017, 34(1): 30-39. [15] 孙红, 刘宁, 邢子正, 等. 马铃薯冠层光谱响应特征参数优化与生长期判别[J]. 光谱学与光谱分析, 2019, 39(6): 1870-1877. Sun H, Liu N, Xing Z Z, et al.Parameter optimization of potato spectral response characteristics and growth stage ldentification[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1870-1877. [16] 刘声传, 曹雨, 鄢东海, 等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学, 2013, 33(6): 517-525. Liu S C, Cao Y, Yan D H, et al.Geographical distribution and morphology of wild tea germplasm resources in Guizhou and its relationship with climatic factors[J]. Journal of Tea Science, 2013, 33(6): 517-525. [17] 马宏亮, 孙明国, 吴义恒, 等. 红外波段水汽连续吸收研究进展[J]. 大气与环境光学学报, 2018, 13(5): 26-38. Ma H L, Sun M G, Wu Y H, et al.Research progress of water vapour continuum in infrared spectral regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 26-38. [18] 陈辉煌, 彭松泰, 陈文惠, 等. 基于地面高光谱数据鲜茶叶特征选择与品种识别[J]. 福建师范大学学报(自然科学版), 2016, 32(6): 89-95, 102. Chen H H, Peng S T, Chen W H, et al.Fresh tea discrimination using in situ hyperspectral data[J]. Journal of Fujian Normal University (Natural Science Edition), 2016, 32(6): 89-95, 102. [19] 陈玲, 熊智, 孙浩, 等. 四种不同年份普洱茶中茶多酚与咖啡碱成分的分析[J]. 食品工业科技, 2011, 32(10): 132-134, 138. Chen L, Xiong Z, Sun H, et al.Study on the relationship between the content of tea polyphenol and caffeine and the storage period of Pu’er teas[J]. Science and Technology of Food Industry, 2011, 32(10): 132-134, 138. [20] 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439. Yu S, He Z L, Chen G C, et al.Chemical characteristics of soil in the root layer of tea trees of different ages and their effects on microflora and quantity[J]. Acta Pedologica Sinica, 2003, 40(3): 433-439. [21] 林郑和, 钟秋生, 陈常颂, 等. 不同茶树品种缺氮下叶片光合特性的变化分析[C]//中国科学技术协会. 第十五届中国科协年会第20分会场: 科技创新与茶产业发展论坛论文集. 北京: 中国科学技术协会学会学术部, 2013: 96-101. Lin Z H, Zhong Q S, Chen C S, et al.Photosynthetic characteristic of different tea cultivars in response to nitrogen deficiency[C]//China Association for Science and Technology. The 20th session of the 15th annual meeting of China Association for Science and Technology: Proceedings of the Forum on Science and Technology Innovation and Tea Industry Development. Beijing: Academic department of China Association for Science and Technology, 2013: 96-101. [22] 许丽颖, 刘斗南, 刘月. 不同茶树品种叶片的花青素研究进展[J]. 福建茶叶, 2019, 41(3): 4-5. Xu L Y, Liu D N, Liu Y.Research progress on anthocyanins in leaves of different tea tree varieties[J]. Tea in Fujian, 2019, 41(3): 4-5. [23] 梁守真, 施平, 马万栋, 等. 植被叶片光谱及红边特征与叶片生化组分关系的分析[J]. 中国生态农业学报, 2010, 18(4): 804-809. Liang S Z, Shi P, Ma W D, et al.Relational analysis of spectra and red-edge characteristics of plant leaf and leaf biochemical constituent[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 804-809. [24] 王胜鹏, 郑鹏程, 龚自明, 等. 基于近红外光谱技术的茶鲜叶海拔高度判别模型建立[J]. 华中农业大学学报, 2018, 37(1): 89-94. Wang S P, Zheng P C, Gong Z M, et al.Establishment of altitude discrimination model of fresh tea leaves based on near infrared spectroscopy[J]. Journal of Huazhong Agricultural University, 2018, 37(1): 89-94. |