欢迎访问《茶叶科学》,今天是

茶叶科学 ›› 2021, Vol. 41 ›› Issue (2): 228-236.doi: 10.13305/j.cnki.jts.2021.02.005

• 研究报告 • 上一篇    下一篇

基于专属0-1模型的茶叶验真方法

朱晨鹏1, 彭宏京1,*, 肖庆华1, 施浩杰1, 吴广2   

  1. 1.南京工业大学计算机科学与技术学院,江苏 南京 211800;
    2.新立讯科技股份有限公司,江苏 南京 210012
  • 收稿日期:2020-01-08 修回日期:2020-05-14 出版日期:2021-04-15 发布日期:2021-04-13
  • 通讯作者: *penghongjing@163.com
  • 作者简介:朱晨鹏,男,硕士研究生,主要从事计算机视觉方面的研究。
  • 基金资助:
    国家重点研发计划(2018YFC0808500)

Tea Authenticity Verification Method Based on Exclusive Binary Classifier

ZHU Chenpeng1, PENG Hongjing1,*, XIAO Qinghua1, SHI Haojie1, WU Guang2   

  1. 1. School of Computer Science and Technology, Nanjing University of Technology, Nanjing 211800, China;
    2. Newlixon Tech. Co., Ltd , Nanjing 210012, China
  • Received:2020-01-08 Revised:2020-05-14 Online:2021-04-15 Published:2021-04-13

摘要: 针对传统滤波方法在茶叶特征选择上都存在一定的盲目性,以及茶叶类别数不确定等问题,提出为每一类茶叶都配备一个专属0-1分类器的验真方法。其中正样本是目标茶叶本身,标签为1,负样本是其余茶叶类型,标签为0,训练过程中迫使模型自动提取出最适合于区分目标茶叶的隐式特征进行验真或验假,同时使用孪生网络对负样本进行筛选,缓解了正负样本不平衡的问题。试验结果表明,该方法很好的适应了茶叶类别数不确定因素的干扰,具有较强的鲁棒特性,是一种有效可行的方法。

关键词: 0-1模型, 茶叶验真, 孪生网络, 隐式特征

Abstract: Owing to blindness in the selection of tea features in traditional filtering methods and the uncertainty of tea categories, a verification method was proposed to equip each type of tea with a exclusive 0-1 classifier. The positive sample is the target tea itself, the label is 1. The negative sample is the remaining tea type, and the label is 0. During the training process, the model is forced to automatically extract the implicit features that are most suitable for distinguishing the target tea for true and false. This method uses the Siamese network to screen the negative samples, which alleviates the problem of imbalance between positive and negative samples. The experimental results show that this method is well adapted to the disturbance of uncertainty of tea categories and has strong robustness. It is an effective and feasible method.

Key words: binary classifier, tea verification, siamese network, feature extraction

中图分类号: