[1] Yang T, Chaudhuri S, Yang L, et al.A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. Biological Chemistry, 2010, 285(10): 7119-26. [2] Sanders D, Pelloux J, Brownlee C, et al.Calcium at the crossroads of signaling[J]. The Plant Cell, 2002, 14: S401-S417. [3] Batisti O, Kudla J.Analysis of calcium signaling pathways in plants[J]. Biochimica Et Biophysica Acta, 2012, 8: 1283-1293. [4] Wilkins K A, Matthus E, Swarbreck S M, et al.Calcium-mediated abiotic stress signaling in roots[J]. Frontiers in Plant Science, 2016, 8: 245. doi: 10.3389/fpls.2016.01296. [5] 杨俊. OsCaM1-1和OsCML16调控水稻耐逆性机制的研究[D]. 武汉: 华中农业大学, 2018. Yang J.Study on the mechanisms of OsCaM1-1 and OsCML16 to regulate stress tolerance in rice [D]. Wuhan: Huazhong Agricultural University, 2018. [6] Xu G Y, Rocha P S, Wang M L, et al.A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta, 2011, 234(1): 47-59. [7] Zhu X Y, Robe E, Jomat L, et al.CML8, an Arabidopsis calmodulin-like protein, plays a role in Pseudomonas syringae plant immunity[J]. Plant and Cell Physiology, 2016, 58(2): 307-319. [8] Delk N A, Johnson K A, Chowdhury N I, et al.CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, day length, and ion stress[J]. Plant Physiology, 2005, 139(1): 240-253. [9] Park H C, Chan Y P, Koo S C, et al.AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana[J]. Plant Cell Reports, 2010, 29(11): 1297-1304. [10] Scholz S S, Vadassery J, Heyer M, et al.Mutation of the Arabidopsis calmodulin-Like protein CML37 deregulates the Jasmonate pathway and enhances susceptibility to herbivory[J]. Molecular Breeding, 2014, 7(12): 1712-1726. [11] Munir S, Hui L, Xing Y, et al.Overexpession of calmodulin-like (ShCML44) stesresponsive gene from Solanum habrochaites enhances tolerance to multiple abiotic sresses[J]. Scientifc Reports, 2016, 8: 31772. doi: 10.1038/srep31772. [12] 蒋芯. 低温胁迫下茶树花粉管相关基因的分离与表达分析[D]. 南京: 南京农业大学, 2013. Jiang X.Isolation and expression of genes in tea (Camellia Sinensis (L.) O.Kuntze) pollen tube under cold stress [D]. Nanjing: Nanjing Agricultural University, 2013. [13] 杜昱林. 茶树花粉CsE1α、CsCML21基因的亚细胞定位及启动子克隆与功能验证[D]. 南京: 南京农业大学, 2015. Du Y L.Subcellular localization of CsE1α and CsCML21 and cloning and expression of the promoters from the pollen of Camellia Sinensis [D]. Nanjing: Nanjing Agricultural University, 2015. [14] Li Y Y, Wang X W, Ban Q Y, et al.Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinenis[J]. BMC Genomics, 2019, 20(1): 624. doi: 10.1186/s12864-019-5988-3. [15] Wang X C, Zhao Q Y, Ma C L, et a1. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14: 415. doi: 10.1186/1471-2164-14-415. [16] Ma Q P, Zhou Q Q, Chen C, et al.Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis)[J]. Scientific Reports, 2019, 9(1): 8211. doi: 10.1038/s41598-019-44681-7. [17] Ding C Q, Lei L, Yao L N, et al.The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses[J]. Plant Physiology and Biochemistry, 2019, 143: 190-202. [18] 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182. Yang Y J, Zheng L Y, Wang X C.Effect of cold acclimation and ABA on cold hardiness, contents of proline in tea plants[J]. Journal of Tea Science, 2004, 24(3): 177-182. [19] 王玉, 王会, 丁兆堂. 茶树黄山种自然杂交后代抗寒性研究[J]. 山东农业科学, 2012(5): 28-32. Wang Y, Wang H, Ding Z T.Research on cold resistance of natural hybrid progenies of Camellia sinensis cv. Huangshanzhong[J]. Shandong Agricultural Sciences, 2012(5): 28-32. [20] 林郑和, 钟秋生, 游小妹, 等. 低温胁迫对茶树抗氧化酶活性的影响[J]. 茶叶科学, 2018, 38(4): 363-371. Lin Z H, Zhong Q S, You X M, et al.Antioxidant enzyme activity of tea plant (Camellia sinensis) in response to low temperature stress[J]. Journal of Tea Science, 2018, 38(4): 363-371. [21] 刘宇鹏, 陈芳, 胡家敏, 等. 低温对茶树叶片生理生化指标的影响[J]. 浙江农业科学, 2018, 59(7): 1120-1122, 1126. Liu Y P, Chen F, Hu J M, et al.Effects of low temperature on physiological and biochemical indexes of tea leaves[J]. Zhejiang Agricultural Science, 2018, 59(7): 1120-1122, 1126. [22] 黄海涛, 余继忠, 张伟, 等. 电导法配合Logistic方程鉴定茶树抗寒性的探讨[J]. 浙江农业科学, 2009(3): 577-579. Huang H T, Yu J Z, Zhang W, et al.Determination of cold tolerance based on electrical conductivity method combined with logistic equation in tea plant[J]. Journal of Zhejiang Agricultural Sciences, 2009(3): 577-579. [23] Hao X Y, Horvath, Chao W S, et al. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. [24] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [25] Maxwell K, Johnson G N.Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668. [26] 李叶云, 庞磊, 陈启文, 等. 低温胁迫对茶树叶片生理特性的影响[J]. 西北农林科技大学学报, 2012, 40(4): 134-139. Li Y Y, Pang L, Chen Q W, et al.Effects of low temperature stress on physiological characteristics of tea leaves (Camellia sinensis L.)[J]. Journal of Northwest A&F University, 2012, 40(4): 134-139. [27] 张玉翠, 王连翠. 低温对茶树叶片膜透性和保护酶活性的影响[J]. 北方园艺, 2010(9): 38-40. Zhang Y C, Wang L C.Effect of low temperature stress on membrane permeability and protection of activity in tea leaves[J]. Northern Horticulture, 2010(9): 38-40. [28] 罗军武, 唐和平. 茶树不同抗寒性品种间保护酶类活性的差异[J]. 湖南农业大学学报(自然科学版), 2001, 27(2): 94-96. Luo J W, Tang H P.Differences of activities of protective enzymes of tea plant varieties with different cold resistant abilities[J]. Journal of Hunan Agricultural University (Natural Sciences), 2001, 27(2): 94-96. [29] 朱政, 蒋家月, 江昌俊, 等. 低温胁迫对茶树叶片SOD可溶性蛋白和可溶性糖含量的影响[J]. 安徽农业大学学报, 2011, 38(1): 24-26. Zhu Z, Jiang J Y, Jiang C J, et al.Effects of low temperature stress on SOD activity, soluble protein content and soluble sugar content in Camellia sinensis leaves[J]. Journal of Anhui Agricultural University, 2011, 38(1): 24-26. [30] 李志博, 魏亦农, 杨敏, 等. 低温胁迫对棉花幼苗叶绿素荧光特性的影响初探[J]. 棉花学报, 2006(4): 65-67. Li Z B, Wei Y N, Yang M, et al.Primary study on effects of low temperature on chlorophyll fluorescence characteristics of cotton seedling[J]. Cotton Science, 2006(4): 65-67. [31] 朱政. 茶树抗寒性生理指标的筛选及抗寒性鉴定方法的建立[D]. 合肥: 安徽农业大学, 2011. Zhu Z.Screening of physiological indicators of cold resistance of tea tree and establishment of cold resistance identification method [D]. Hefei: Anhui Agricultural University, 2011. [32] Zeng H, Xu L, Singh A, et al.Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses[J]. Frontiers in Plant Science, 2015, 6: 600. doi: 10.3389/fpls.2015.00600. [33] Gifford J, Walsh M, Vogel H.Structures and metal-ion-binding properties of the Ca2+ -binding helix-loop-helix EF-hand motifs[J]. Biochemical Journal, 2007, 405: 199-221. [34] Mccormack E, Braam J.Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist, 2003, 159(3): 585-598. [35] Boonburapong B, Buaboocha T.Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biology, 2007, 7: 4. doi: 10.1186/1471-2229-7-4. [36] Munir S, Hui L, Xing Y, et al.Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum)[J]. Plant Physiology and Biochemistry, 2016, 102: 167-179. [37] Yin X M, Huang L F, Zhang X, et al.OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice[J]. Journal of Plant Biology, 2015, 58(1): 68-73. [38] 刘伟, 滕腾, 赵懿琛, 等. 杜仲类钙调蛋白基因EuCML5的克隆及表达分析[J]. 园艺学报, 2020, 47(3): 590-600. Liu W, Teng T, Zhao Y C, et al.Cloning and expression analysis of EuCML5 gene in Eucommia ulmoides[J]. Acta Horticulturae Sinica, 2020, 47(3): 590-600. [39] Li C L, Meng D, Zhang J H, et al.Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malus × domestica)[J]. Plant Physiology and Biochemistry, 2019, 139: 600-612. [40] Zhang X, Wang T, Liu M, et al.Calmodulin-like gene MtCML40 is involved in salt tolerance by regulating MtHKTs transporters in Medicago truncatula[J]. Environmental and Experimental Botany, 2018, 157: 79-90. |