[1] Satou M, Enoki H, Oikawa A, et al Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins[J]. Plant Molecular Biology, 2014, 85(4/5): 411-428. [2] Zeng X, Tang R, Guo H, et al.A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter[J]. Plant Molecular Biology, 2017, 94(1/2): 137-148. [3] Sawers R J, Viney J, Farmer P R, et al.The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase[J]. Plant Molecular Biology , 2006, 60(1): 95-106. [4] Gao M, Hu L, Li Y, et al.The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit[J]. Theoretical and Applied Genetics, 2016, 129(10): 1961-1973. [5] Liu M, Wang Y, Nie Z, et al.Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr][J]. Plant Molecular Biology, 2020, 103: 527-543. doi: 10.1007/s11103-020-01008-9. [6] 卢翠, 沈程文. 茶树白化变异研究进展[J]. 茶叶科学, 2016, 36(5): 445-451. Lu C, Shen C W.Research progress of albino tea plant (Camellia sinensis (L.) O. Kuntze)[J]. Journal of Tea Science, 2016, 36(5): 445-451. [7] Cheng S, Fu X, Liao Y, et al.Differential accumulation of specialized metabolite L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves[J]. Food Chemistry, 2019, 276: 93-100. [8] Lu M, Han J, Zhu B, et al.Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis)[J]. Planta, 2019, 249(2): 363-376. [9] Farmer D A, Brindley A A, Hitchcock A, et al.The ChlD subunit links the motor and porphyrin binding subunits of magnesium chelatase[J]. Biochemical Journal, 2019, 476(13): 1875-1887. [10] Sawicki A, Zhou S, Kwiatkowski K, et al.1-N-histidine phosphorylation of ChlD by the AAA+ ChlI2 stimulates magnesium chelatase activity in chlorophyll synthesis[J]. Biochemical Journal, 2017, 474(12): 2095-2105. [11] Huang Y, Li H.Arabidopsis CHLI2 can substitute for CHLI1[J]. Plant Physiology, 2009, 150(2): 636-645. [12] Wang C, Zhang L, Li Y, et al.Single nucleotide mutagenesis of the TaCHLI gene suppressed chlorophyll and fatty acid biosynthesis in common wheat seedlings[J]. Frontiers in Plant Science, 2020, 11: 97. doi: 10.3389/fpls.2020.00097. [13] Du H, Qi M, Cui X, et al.Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase[J]. Molecular Breeding, 2018, 38(6): 71. doi: 10.1007/s11032-018-0819-9. [14] Zhang H, Liu L, Cai M, et al.A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice[J]. Plant Molecular Biology Reporter, 2015, 33(6): 1975-1987. [15] Liu X, Yu W, Wang G, et al.Comparative proteomic and physiological analysis reveals the variation mechanisms of leaf coloration and carbon fixation in a xantha mutant of Ginkgo biloba L[J]. International Journal of Molecular Sciences, 2016, 17(11): 1794. doi: 10.3389/fpls.2020.00097. [16] 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419. Guo J H, Wang W D, Gu X, et al.Cloning and expression analysis of WRKY transcription factor gene CsWRKY57 in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2017, 37(4): 411-419. [17] Xia E H, Li F D, Tong W et al. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. [18] 向芬, 李维, 刘红艳,等. 茶树叶绿素测定方法的比较研究[J]. 茶叶通讯, 2016, 43(4):37-40. Xiang F, Li W, Liu H Y, et al.Comparisonon methods of chlorophyll extraction in Camellia sinensis[J]. Journal of Tea Communication, 2016, 43(4):37-40. [19] Wellburn A R, Lichtenthaler H.Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents[M]//Advances in Photosynthesis Researchr. Dordrecht: Springer Link, 1984: 9-12. [20] Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. [21] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT method[J]. Methods, 2001, 25(4): 402-408. [22] Zhang D, Chang E, Yu X, et al.Molecular characterization of magnesium chelatase in soybean [Glycine max (L.) Merr.][J]. Frontiers in Plant Science, 2018, 9: 720. doi: 10.3389/fpls.2018.00720. [23] 吴全金. ‘白鸡冠’茶树响应光调控的基因差异及理化特征分析[D]. 福州: 福建农林大学, 2015. Wu Q J.Gene differential analysis and physicochemical characteristics of Camellia sinensis cv. Baijiguan in response to light [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. [24] Li Q, Fang C, Duan Z, et al.Functional conservation and divergence of GmCHLI genes in polyploid soybean[J]. The Plant Journal, 2016, 88(4): 584-596. [25] Brzezowski P, Sharifi M N, Dent R M, et al.Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1[J]. Journal of Experimental Botany, 2016, 67(13): 3925-3938. |