[1] Hashimoto T, Goto M, Sakakibara H, et al.Yellow tea is more potent than other types of tea in suppressing liver toxicity induced by carbon tetrachloride in rats[J]. Phytotherapy Research, 2007, 21(7): 668-670. [2] Wang K, Liu F, Liu Z, et al.Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer[J]. International Journal of Food Science & Technology, 2011, 46(7): 1406-1412. [3] Yang Z, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599. [4] Azman N A M, Peiró S, Fajarí L, et al. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2014, 62(25): 5743-5748. [5] Carloni P, Tiano L, Padella L, et al.Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International, 2013, 53: 900-908. [6] Dias T R, Alves M G, Tomas G D, et al.White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 608-617. [7] Espinosa C, Lopez-Jimenez J A, Perez-Llamas F, et al. Long-term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats[J]. J Sci Food Agr, 2016, 96(9): 3079-3087. [8] Hajiaghaalipour F, Kanthimathi M S, Sanusi J, et al.White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage[J]. Food Chemistry, 2015, 169: 401-410. [9] Dias T R, Alves M G, Rato L, et al.White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality[J]. J Nutr Biochem, 2016(37): 83-93. [10] Song J L, Zhou Y L, Feng X, et al.White tea (Camellia sinenesis (L.)) ethanol extracts attenuate reserpine-induced gastric ulcers in mice[J]. Food Sci Biotechnol, 2015, 24(3): 1159-1165. [11] Santana-Rios G, Orner G A, Amantana A, et al.Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay[J]. Mutation Research, 2001, 495: 61-74. [12] López V, Calvo M I.White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells[J]. Plant Foods for Human Nutrition, 2011, 66: 22-26. [13] Wang G, Zhao X.Comparative study on antimutagenic and in vitro anticancer activities between two kinds of white tea and green tea[J]. Food Science, 2009, 30: 243-245. [14] 陈玉春, 王碧英. 白茶对小鼠血清红细胞生成素水平的影响[J]. 茶叶科学, 1998, 18(1): 159-160. Chen Y C, Wang B Y.Effect of white tea on serum erythropoietin level in mice[J]. Journal of Tea Science, 1998, 18(1): 159-160. [15] 梁丽云. 白茶在萎调及贮藏中茶多酚变化的研究[J]. 贵州茶叶, 2017, 45(2): 9-13. Liang L Y.Research status on the change of tea polyphenols in the wilting and storage of white tea[J]. Guizhou Tea, 2017, 45(2): 9-13. [16] 陶湘辉, 陈常颂, 林郑和, 等. 茶叶EGCG在不同茶类加工过程的变化初探[J]. 茶叶科学技术, 2010(3): 27-30. Tao X H, Chen C S, Lin Z H, et al.Preliminary study on the changes of tea EGCG in different tea processing[J]. Tea Science and Technology, 2010(3): 27-30. [17] 陈静, 俞滢, 张丹丹, 等. 白茶萎凋过程中儿茶素合成关键酶基因表达分析[J]. 南方农业学报, 2016, 47(8): 1364-1369. Chen J, Yu Y, Zhang D D, et al.Expression of genes encoding key enzymes in biosynthesis pathways of catechins in the withering process of white tea[J]. Journal of Southern Agriculture, 2016, 47(8): 1364-1369. [18] Wang Y, Zheng P C, Liu P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J]. Food Chemistry, 2019, 272: 313-322. [19] Dai W, Xie D, Lu M, et al.Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach[J]. Food Research International, 2017, 96: 40-45. [20] Marat T, 张钎, 屈艳勤, 等. 白茶加工过程中有机酸组分含量分析[J]. 福建茶叶, 2019, 41(3): 11-12. Marat T, Zhang Q, Qu Y Q, et al.Analysis of the content of organic acid components in the processing of white tea[J]. Tea in Fujian, 2019, 41(3): 11-12. [21] 宋振硕, 王丽丽, 陈键, 等. 茶鲜叶萎凋过程中游离氨基酸的动态变化规律[J]. 茶叶学报, 2015, 56(4): 206-213. Song Z S, Wang L L, Chen J, et al.Changes on free amino acids in fresh tea leaves during withering[J]. Acta Tea Sinica, 2015, 56(4): 206-213. [22] Chen Q, Shi J, Mu B, et al.Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chem, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412. [23] 张应根, 陈林, 陈泉宾, 等. 白茶自然萎凋过程中风味形成的动态研究[J]. 茶叶学报, 2016, 57(2): 80-84. Zhang Y G, Chen L, Chen Q B, et al.Flavor formation of white tea during natural withering[J]. Acta Tea Sinica, 2016, 57(2): 80-84. [24] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学, 2020, 41(12): 197-203. Li X L, Yu X M, Lin J, et al.Comparative metabolite characteristics of white tea with green tea, Oolong tea and black tea based on non-targeted metabolomics approach[J]. Food Science, 2020, 41(12): 197-203. [25] Jiang X L, Liu Y J, Wu Y H, et al.Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis][J]. Sci. Rep, 2015, 5: 8742. doi: 10.1038/srep08742. [26] 王丽丽, 宋振硕, 陈键, 等. 茶鲜叶萎凋过程中儿茶素和生物碱的动态变化规律[J]. 福建农业学报, 2015, 30(9): 856-862. Wang L L, Song Z S, Chen J, et al.Changes on catechin and alkaloid contents in fresh tea leaves during withering[J]. Fujian Journal of Agricultural Sciences, 2015, 30(9): 856-862. [27] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 49. Wan X C, Xia T.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 49. [28] Dai X, Liu Y, Zhuang J, et al.Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins[J]. New Phytologist, 2020, 226(4): 1104-1116. [29] Fraser K, Lane G A, Otter D E, et al.Non-targeted analysis by LC-MS of major metabolite changes during the oolong tea manufacturing in New Zealand[J]. Food Chemistry, 2014, 151: 394-403. [30] Zhang L, Tai Y L, Wang Y J, et al.The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS[J]. Sci Rep, 2017, 7: 46131. doi: 10.1038/srep46131. [31] Liu C, Wang X, Shulaev V, et al.A role for leucoanthocyanidin reductase in the extension of proanthocyanidins[J]. Nat Plants, 2016, 2: 16182. doi: 10.1038/NPLANTS.2016.182. [32] Wang P, Liu Y, Zhang L, et al.Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins[J]. The Plant Journal, 2019, 101(1): 18-36. [33] Chen Q, Shi J, Mu B, et al.Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing[J]. Food Chemistry, 2020, 332: 127412. doi: 10.1016/j.foodchem.2020.127412. [34] 白鸿. 保健食品功效成分检测方法[M]. 北京: 中国中医药出版社, 2011: 71. Bai H.Testing method for functional components of health food [M]. Beijing: China Press of Traditional Chinese Medicine, 2011: 71. [35] Wu C, Xu H, Héritier J, et al.Determination of catechins and flavonol glycosides in Chinese tea varieties[J]. Food Chemistry, 2012, 132(1): 144-149. [36] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2007: 180-184. Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2007: 180-184. |