欢迎访问《茶叶科学》,今天是

茶叶科学 ›› 2021, Vol. 41 ›› Issue (4): 454-462.doi: 10.13305/j.cnki.jts.2021.04.002

• 研究报告 • 上一篇    下一篇

野生和栽培大理茶居群的遗传多样性与群体结构

毛娟1,2, 江鸿键3, 杨如兵4, 李崇兴5, 马成英6, 陈亮1, 马建强1,*   

  1. 1.中国农业科学院茶叶研究所,浙江 杭州 310008;
    2.西藏自治区农牧科学院,西藏 拉萨 850000;
    3.云南省临沧市农业农村局,云南 临沧 677000;
    4.云南省临沧市临翔区农业农村局,云南 临沧 677000;
    5.云南省临沧市茶叶科学研究所,云南 临沧 677000;
    6.广东省农业科学院茶叶研究所,广东 广州 510000
  • 收稿日期:2020-12-28 修回日期:2021-02-04 出版日期:2021-08-15 发布日期:2021-08-12
  • 通讯作者: *majianqiang@tricaas.com
  • 作者简介:毛娟,女,硕士研究生,主要从事茶树种质资源与遗传育种研究。
  • 基金资助:
    中国农业科学院科技创新工程(CAAS-ASTIP-2017-TRICAAS)、财政部和农业农村部:国家现代农业产业技术体系(CARS-19)、浙江省农业新品种选育重大科技专项(2016C02053)、广东省农业科学院院长专项(201838)

Genetic Diversity and Population Structure of Wild and Cultivated Camellia taliensis Populations

MAO Juan1,2, JIANG Hongjian3, YANG Rubing4, LI Chongxing5, MA Chengying6, CHEN Liang1, MA Jianqiang1,*   

  1. 1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
    2. Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
    3. Lincang Municipal Bureau of Agriculture and Rural Affairs, Lincang 677000, China;
    4. Linxiang District Bureau of Agriculture and Rural Affairs, Lincang 677000, China;
    5. Tea Research Institute of Lincang, Lincang 677000, China;
    6. Tea Research Institute, Guandong Academy of Agricultural Sciences, Guangzhou 510000, China
  • Received:2020-12-28 Revised:2021-02-04 Online:2021-08-15 Published:2021-08-12

摘要: 大理茶是栽培型茶树的野生近缘种,了解大理茶居群的遗传多样性和群体结构,对于大理茶资源的有效保护和开发利用至关重要。利用30对茶树核心SSR引物,对3个代表性的野生和栽培大理茶居群进行遗传分析。结果表明,30对SSR引物在所有大理茶样本中都能扩增出特异性产物,每个位点检测到的等位基因数为2~14个,PIC范围为0.041~0.877,平均0.491。3个大理茶居群具有中等水平的遗传多样性,其中大雪山(DXS)野生居群的遗传多样性相对较低。香竹菁(XZQ)和白莺山(BYS)栽培居群的近交水平很高,近交系数(Fis)分别为0.728和0.913。居群配对分析显示,居群间遗传分化指数(Fst)均小于0.15,基因流(Nm)大于1。分子方差分析表明3个大理茶居群的遗传差异主要来源于居群内(94.1%)。聚类分析显示,野生和栽培大理茶单株的遗传距离相对较大。基于PCoA和Structure的群体结构分析显示,野生居群的遗传背景单一,栽培居群的遗传背景较复杂,其中7个BYS栽培居群单株可能是大理茶和阿萨姆茶通过渐渗杂交形成。

关键词: 大理茶, SSR, 遗传多样性, 群体结构

Abstract: Camellia taliensis is a wild relative of tea plants (C. sinensis). Understanding of the genetic diversity and population structure of Camellia taliensis is important and helpful for protecting and utilizing these germplasm resources. In this study, a set of 30 core SSR markers derived from tea plants were used for genetic analysis of three representative wild and cultivated C. taliensis populations. The results show that all SSR markers successfully yielded specific amplification, with a range of polymorphic alleles from 2 to 14. The PIC value was between 0.041 and 0.877, with an average of 0.491. The three C. taliensis populations showed moderate levels of genetic diversity, and it was relatively lower for the Daxueshan (DXS) wild population. The inbreeding coefficient (Fis) of Xiangzhuqing (XZQ) and Baiyingshan (BYS) cultivated populations were 0.728 and 0.913 respectively, which meant high levels of inbreeding. Pairwise comparisons of the genetic differentiation index of three populations were low (Fst<0.15), while the rates of gene flow were high (Nm>1). The results of AMOVA exhibite that 94.1% of the genetic variation was within population. The genetic distances of wild and cultivated C. taliensis individuals were relatively higher. The genetic background of wild population was similar, while it was complex for cultivated populations. Seven individuals of BYS population were possibly originated from hybridization and introgression between C. taliensis and C. sinensis var. assamica.

Key words: Camellia taliensis, SSR, genetic diversity, population structure

中图分类号: