[1] Erb M, Kliebenstein D J.Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy[J]. Plant Physiology, 2020, 184(1): 39-52. [2] Erb M, Reymond P.Molecular interactions between plants and insect herbivores[J]. Annual Review of Plant Biology, 2019, 70: 527-557. [3] Aerts N, Mendes M P, Van Wees S C M. Multiple levels of crosstalk in hormone networks regulating plant defense[J]. The Plant Journal, 2021, 105(2): 489-504. [4] Wang J, Wu D, Wang Y, et al.Jasmonate action in plant defense against insects[J]. Journal of Experimental Botany, 2019, 70(13): 3391-3400. [5] Ng D W, Abeysinghe J K, Kamali M.Regulating the regulators: the control of transcription factors in plant defense signaling[J]. International Journal of Molecular Sciences, 2018, 19(12): 3737. doi: 10.3390/ijms19123737. [6] Cao Y P, Li K, Li Y L, et al.MYB transcription factors as regulators of secondary metabolism in plants[J]. Biology, 2020, 9(3): 61. doi: 10.3390/biology9030061. [7] 吴雨捷, 吴健, 王幼平, 等. WRKY转录因子在植物抗逆反应中的功能研究进展[J]. 分子植物育种, 2020, 18(22): 7413-7422. Wu Y J, Wu J, Wang Y P, et al.Advances in the function of WRKY transcription factor in plant stress response[J]. Molecular Plant Breeding, 2020, 18(22): 7413-7422. [8] He J, Bouwmeester H J, Dicke M, et al.Genome-wide analysis reveals transcription factors regulated by spider-mite feeding in cucumber (Cucumis sativus)[J]. Plants, 2020, 9(8): 1014. doi: 10.3390/plants9081014. [9] Rushton P J, Torres J T, Parniske M, et al.Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO Journal, 1996, 15(20): 5690-5700. [10] Ciolkowski I, Wanke D, Birkenbihl R P, et al.Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function[J]. Plant Molecular Biology, 2008, 68(1/2): 81-92. [11] Bian Z Y, Gao H H, Wang C Y.NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops[J]. International Journal of Molecular Sciences, 2020, 22(1): 81. doi: 10.3390/ijms22010081. [12] Feng K, Hou X L, Xing G M, et al.Advances in AP2/ERF super-family transcription factors in plant[J]. Critical Reviews in Biotechnology, 2020, 40(6): 750-776. [13] Kielbowicz-Matuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses [J]. Plant Science, 2012, 185/186: 78-85. [14] Alves M S, Dadalto S P, Goncalves A B, et al.Plant bZIP transcription factors responsive to pathogens: a review[J]. International Journal of Molecular Sciences, 2013, 14(4): 7815-7828. [15] Bakshi M, Oelmüller R.WRKY transcription factors[J]. Plant Signaling & Behavior, 2014, 9: e27700. doi: doi.org/10.4161/psb.27700. [16] Rushton P J, Somssich I E, Ringler P, et al.WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. [17] Chen F, Hu Y, Vannozzi A, et al.The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2017, 36(5/6): 311-335. [18] Eulgem T, Rushton P J, Robatzek S, et al.The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. [19] Jiang J, Ma S, Ye N, et al.WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. [20] Bai Y L, Sunarti S, Kissoudis C, et al.The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses[J]. Frontiers in Plant Science, 2018, 9: 801. doi: 10.3389/fpls.2018.00801. [21] Skibbe M, Qu N, Galis I, et al.Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7): 1984-2000. [22] Yao D M, Zou C, Shu Y N, et al.WRKY transcription factors in Nicotiana tabacum modulate plant immunity against whitefly via interacting with MAPK cascade pathways[J]. Insects, 2020, 12(1): 16. doi: 10.3390/insects12010016. [23] Hu L F, Ye M, Li R, et al.The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity[J]. Plant Physiology, 2015, 169(4): 2907-2921. [24] Li R, Zhang J, Li J, et al.Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores[J]. Elife, 2015, 4: e04805. doi: 10.7554/elife.04805. [25] Kloth K J, Wiegers G L, Busscher-Lange J, et al.AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling[J]. Journal of Experimental Botany, 2016, 67(11): 3383-3396. [26] 郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419. Guo J H, Wang W D, Gu X, et al.Cloning and expression analysis of WRKY transcription factor gene CsWRKY57 transcription factor in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2017, 37(4): 411-419. [27] 王鹏杰, 岳川, 陈笛, 等. 茶树CsWRKY6、CsWRKY31和CsWRKY48基因的分离及表达分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 30-38. Wang P J, Yue C, Chen D, et al.Isolation and expression analysis of CsWRKY6, CsWRKY31 and CsWRKY48 genes in tea plant[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 30-38. [28] 王鹏杰, 陈笛, 林浥, 等. 8个茶树WRKY转录因子基因的克隆与表达分析[J]. 中草药, 2019, 50(3): 685-693. Wang P J, Chen D, Lin Y, et al.Cloning and expression analysis of eight WRKY genes in Camellia sinensis[J]. Chinese Traditional and Herbal Drugs, 2019, 50(3): 685-693. [29] 肖罗丹, 唐磊, 王伟东, 等. 茶树CsWRKYIIcs转录因子的克隆及功能分析[J]. 中国农业科学, 2020, 53(12): 2460-2476. Xiao L D, Tang L, Wang W D, et al.Cloning and functional analysis of CsWRKYⅡcs transcription factors in tea plant[J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476. [30] Wang Y, Shu Z, Wang W, et al.CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses[J]. Biologia Plantarum, 2016, 60: 443-451. [31] 戈林刚, 叶保华, 辛肇军, 等. 茶树CsWRKY3基因的克隆及表达分析[J]. 山东农业科学, 2018, 50(1): 1-8. Ge L G, Ye B H, Xin Z J, et al.Cloning and expression analysis of CsWRKY3 gene in Camellia sinensis[J]. Shandong Agricultural Sciences, 2018, 50(1): 1-8. [32] Journot-Catalino N, Somssich I E, Roby D, et al.The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. Plant Cell, 2006, 18(11): 3289-3302. [33] Ali M A, Wieczorek K, Kreil D P, et al.The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots[J]. PLoS One, 2014, 9(7): e102360. doi: 10.1371/journal.pone.0102360. [34] Ali M A, Azeem F, Nawaz M A, et al.Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology, 2018, 226: 12-21. [35] Ullah A, Sun H, Hakim, et al. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species[J]. Physiologia Plantarum, 2018, 162(4): 439-454. [36] Chen J, Nolan T M, Ye H, et al.Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 2017, 29(6): 1425-1439. [37] Fan Z Q, Tan X L, Shan W, et al.Characterization of a transcriptional regulator, BrWRKY6, associated with gibberellin-suppressed leaf senescence of Chinese flowering cabbage[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1791-1799. [38] Singh D, Debnath P, Roohi, et al. Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis[J]. Physiology and Molecular Biology of Plants, 2020, 26(6): 1187-1199. [39] Lan J, Lin Q, Zhou C, et al.Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice[J]. Plant Molecular Biology, 2020, 104(4/5): 429-450. [40] Qiu D Y, Xiao J, Ding X H, et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-499. |