[1] Leal W S.Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58: 373-391. [2] Pelosi P, Zhou J J, Ban L P, et al.Soluble proteins in insect chemical communication[J]. Cellular and Molecular Life Sciences, 2006, 63(14): 1658-1676. [3] Bruce T, Wadhams L J, Woodcock C M.Insect host location: a volatile situation[J]. Trends in Plant Science, 2005, 10(6): 269-274. [4] Butenandt A, Beckmann R, Stamm D, et al.Über den sexual-lockstoff des seidenspinners Bombyx mori. Reindarstellung und Konstitution[J]. Zeitschrift für Naturforschg B, 1959, 14(4): 283-284. [5] Symonds M, Elgar M A.The evolution of pheromone diversity[J]. Trends in Ecology & Evolution, 2008, 23(4): 220-228. [6] 李喜旺, 刘丰静, 邵胜荣, 等. 茶尺蠖绿色防控技术研究现状及展望[J]. 茶叶科学, 2017, 37(4): 325-331. Li X W, Liu F J, Shao S R, et al.Research progress and prospect of green control techniques of Ectropis obliqua[J]. Journal of Tea Science, 2017, 37(4): 325-331. [7] 高旭晖, 宛晓春, 杨云秋, 等. 茶尺蠖生物学习性研究[J]. 植物保护, 2007, 188(3): 110-113. Gao X H, Wan X C, Yang Y Q, et al.Studies on the biological habits of Ectropis obliqua Prout[J]. Plant Protection, 2007, 188(3): 110-113. [8] Luo Z X, Li Z Q, Cai X M, et al.Evidence of premating isolation between two sibling moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae)[J]. Journal of Economic Entomology, 2017, 110(6): 2364-2370. [9] Sun X L, Li X W, Xin Z J, et al.Development of synthetic volatile attractant for male Ectropis obliqua moths[J]. Journal of Integrative Agriculture, 2016, 15(7): 1532-1539. [10] 张帅琪, 冯博文, 张婧, 等. 灰茶尺蠖和茶尺蠖绿色防控技术研究进展[J]. 环境昆虫学报, 2020, 42(5): 1121-1138. Zhang S Q, Feng B W, Zhang J, et al.Research progress on green control techniques of Ectropis grisescens Warren and Ectropis obliqua Prout[J]. Journal of Environmental Entomology, 2020, 42(5): 1121-1138. [11] Yang Y Q, Zhang L W, Guo F, et al.Reidentification of sex pheromones of tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae)[J]. Journal of Economic Entomology, 2016, 109(1): 167-175. [12] 江丽容, 刘守安, 韩宝瑜, 等. 7种寄主和非寄主植物气味对茶尺蠖成虫行为的调控效应[J]. 生态学报, 2010, 30(18): 4993-5000. Jiang L R, Liu S A, Han B Y, et al.The adaptive strategies of insects to plant alleochemicals[J] Acta Ecologica, 2010, 30(18): 4993-5000. [13] Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089. [14] Zhang Z Q, Bian L, Sun X L, et al.Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae)[J]. Pest Management Science, 2015, 71(1): 96-104. [15] Ma L, Li Z Q, Bian L, et al.Identification and comparative study of chemosensory genes related to host selection by legs transcriptome analysis in the tea geometrid Ectropis obliqua[J]. PLoS One, 2016, 11(3): e0149591. doi: 10.1371/journal.pone.0149591. [16] 赵磊, 崔宏春, 张林雅, 等. 茶尺蠖普通气味结合蛋白EoblGOBP2与茶树挥发物的结合功能研究[J]. 茶叶科学, 2014, 34(2): 165-171. Zhao L, Cui H C, Zhang L Y, et al.Molecular binding characterization with tea plant volatiles of a general odorant-binding protein EoblGOBP2 in the tea geometrid, Ectropis oblique Prout (Lepidoptera: Geometridae)[J]. Journal of Tea Science, 2014, 34(2): 165-171. [17] Pelosi P, Iovinella I, Zhu J, et al.Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects[J]. Biological Reviews, 2017, 93(1): 184-200. [18] 冯一璐, 傅晓斌, 吴帆, 等. 茶尺蠖信息素结合蛋白PBP2的基因克隆、原核表达及其结合功能[J]. 中国农业科学, 2017, 50(3): 504-512. Feng Y L, Fu X B, Wu F, et al.Molecular cloning, prokaryotic expression and binding functions of pheromone binding protein 2 (PBP2) in the Ectropis obliqua[J]. Scientia Agricultura Sinica, 2017, 50(3): 504-512. [19] Chen K, Huang M X, Shi Q C, et al.Screening of a potential leafhopper attractants and their applications in tea plantations[J]. Journal of Environmental Science and Health Part B, 2019, 54(10): 1-7. [20] 泽桑梓, 赵宁, 王大纬, 等. 反-2-己烯醛对褐梗天牛成虫引诱剂的作用效率[J]. 中国森林病虫, 2013, 32(3): 46. Ze S Z, Zhao N, Wang D W, et al.Effect of (E)-2-hexenal on attractant efficiency of longicorn beetle[J]. Forest Pest and Disease, 2013, 32(3): 46. [21] 杜家伟. 昆虫信息素及其应用[M]. 北京: 中国林业出版社1988. Du J W.Insect pheromone and its application [M]. Beijing: China Forestry Press, 1988. [22] Maeda T, Ishiwari H.Tiadinil, a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis[J]. Experimental and Applied Acarology, 2012, 58(3): 247-258. [23] 陈宗懋, 许宁, 韩宝瑜, 等. 茶树-害虫-天敌间的化学信息联系[J]. 茶叶科学, 2003, 23(s1): 38-45. Chen Z M, Xu N, Han B Y, et al.Chemical communication between tea plant-herbivore-natural enemies[J]. Journal of Tea Science, 2003, 23(s1): 38-45. [24] Zhu J, Cossé A, Obrycki J J, et al.Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses[J]. Journal of Chemical Ecology, 1999, 25(5): 1163-1177. [25] Zheng J, Li J, Han L, et al.Crystal structure of the Locusta migratoria odorant binding protein[J]. Biochemical Biophysical Research Communications, 2015, 456(3): 737-742. [26] Liu H, Duan H, Wang Q, et al.Key amino residues determining binding activities of the odorant binding protein AlucOBP22 to two host plant terpenoids of Apolygus lucorum[J]. Journal of Agricultural and Food Chemistry, 2019, 67(21): 5949-5956. [27] Wogulis M, Morgan T, Ishida Y, et al.The crystal structure of an odorant binding protein from Anopheles gambiae: Evidence for a common ligand release mechanism[J]. Biochemical Biophysical Research Communications, 2006, 339(1): 157-164. [28] Fu X B, Zhang Y L, Qiu Y L, et al.Physicochemical basis and comparison of two Type II sex pheromone components binding with pheromone-binding protein 2 from tea geometrid, Ectropis obliqua[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50): 13084-13095. [29] Yin J, Zhuang X, Wang Q, et al.Three amino acid residues of an odorant-binding protein are involved in binding odours in Loxostege sticticalis L[J]. Insect Molecular Biology, 2015, 24(5): 528-538. [30] Li G W, Chen X L, Li B L, et al.Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)[J]. PLoS ONE, 2016, 11(5): e0155096. doi: 10.1371/journal.pone.0155096. |