[1] Xu W P, Song Q S, Li D X, et al.Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition[J]. Journal of Agricultural and Food Chemistry, 2012, 60(28): 7064-7070. [2] Sano S, Takemoto T, Ogihara A, et al.Stress responses of shade-treated tea leaves to high light exposure after removal of shading[J]. Plants, 2020, 9(3): 302. doi: 10.3390/plants9030302. [3] 汤雯, 屠幼英. 利用加工方法提高夏秋茶品质研究进展[J]. 茶叶, 2010, 36(2): 77-81. Tang W, Tu Y Y.A review on processing techniques to improve quality of summer-autumn tea[J]. Journal of Tea, 2010, 36(2): 77-81. [4] Dai W, Qi D, Yang T, et al.Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9869-9878. [5] Li X, Ahammed G J, Li Z X, et al.Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids[J]. Frontiers in Plant Science, 2016, 7: 1304. doi: 10.3389/fpls.2016.01304. [6] Yamashita H, Tanaka Y, Umetsu K, et al.Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation[J]. Frontiers in Plant Science, 2020, 11: 556476. doi: 10.3389/fpls.2020.556476. [7] 王雪萍, 龚自明. 夏秋季茶树遮阴效应研究进展[J]. 湖北农业科学, 2017, 56(23): 4447-4449, 4453. Wang X P, Gong Z M.Research progress of shading effect of tea in summer and autumn[J]. Hubei Agricultural Sciences, 2017, 56(23): 4447-4449, 4453. [8] Fu J J, Luo Y L, Sun P Y, et al.Effects of shade stress on turfgrasses morphophysiology and rhizosphere soil bacterial communities[J]. BMC Plant Biology, 2020, 20: 92. doi: 10.1186/s12870-020-2300-2. [9] Liu L L, Li Y Y, She G B, et al.Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading[J]. BMC Plant Biology, 2018, 18(1): 233. doi: 10.1186/s12870-018-1440-0. [10] Takemoto T, Hayashi K.Effect of the difference in the covering methods on growth of tea tree and the canopy surface temperature in summer based on thermal images[J]. Tea Research Journal, 2019, 127: 1-10. [11] 黄永韬, 杨好珍, 黄永芳, 等. 不同遮阴处理对3种茶花生理特性的影响[J]. 广东林业科技, 2012, 28(5): 16-21. Huang Y T, Yang H Z, Huang Y F, et al.Effects of the physiological indices in three varieties of Camellia by different shade treatments[J]. Guangdong Forestry Science and Technology, 2012, 28(5): 16-21. [12] 王国夫, 孙小红, 方逸, 等. 遮阴对抹茶茶园土壤微生物特性及土壤酶活性的影响[J]. 茶叶科学, 2019, 39(3): 355-363. Wang G F, Sun X H, Fang Y, et al.Effects of Shading on microbial characteristics and enzyme activities in matcha tea garden soil[J]. Journal of Tea Science, 2019, 39(3): 355-363. [13] Kumar V, Vogelsang L, Schmidt R R, et al.Remodeling of root growth under combined arsenic and hypoxia stress is linked to nutrient deprivation[J]. Frontiers in Plant Science, 2020, 11: 569687. doi: 10.3389/fpls.2020.569687. [14] 王丽, 邓飞, 郑军, 等. 水稻根系生长对弱光胁迫的响应[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 700-708. Wang L, Deng F, Zheng J, et al.Response of root system growth to low-light stress in indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 700-708. [15] 曾艳. 氮肥、土壤质地对茶树根系生长特性影响的研究[D]. 成都: 四川农业大学, 2014. Zeng Y.The effect of nitrogen and soil textures on the roots of tea plants (Camellia sinensis) [D]. Chengdu: Sichuan Agricultural University, 2014. [16] 萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2005: 67-70. Xiao L T, Wang S G.Experimental techniques of plant physiology [M]. Beijing: China Agriculture Press, 2005: 67-70. [17] 樊明寿, 张福锁. 植物通气组织的形成过程和生理生态学意义[J]. 植物生理学通讯, 2002(6): 615-618. Fan M S, Zhang F S.Aerenchyma formation in plant and its physiological and ecological significance[J]. Plant Physiology Communications, 2002(6): 615-618. [18] 骆耀平. 茶树栽培学[M]. 5版. 北京: 中国农业出版社, 2015: 77. Luo Y P.Tea cultivation [M]. 5th ed. Beijing: China Agriculture Press, 2015: 77. [19] Jackson M B.Regulation of aerenchyma formation in roots and shoots by oxygen and ethylene[J]. Cell Biology, 1989, 35: 263-274. [20] 孔妤, 王忠, 顾蕴洁, 等. 植物根内通气组织形成的研究进展[J]. 植物学通报, 2008, 25(2): 248-253. Kong Y, Wang Z, Gu Y J, et al.Research progress on the formation of aerenchyma in plant roots[J]. Bulletin of Botany, 2008, 25(2): 248-253. [21] Guo D L, Xia M X, Wei X, et al.Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673-683. [22] 闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4): 36-43. Yan G Y, Wang X C, Xing Y J, et al.Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. [23] 汤绍虎, 周启贵, 龙云, 等. 基因活化剂对紫肉甘薯根系活力的影响[J]. 西南大学学报(自然科学版), 2008, 30(4): 92-95. Tang S H, Zhou Q G, Long Y, et al.Effect of gene activator on root vigor of purple flesh sweet potato[J]. Journal of Southwest University (Natural Science Edition), 2008, 30(4): 92-95. [24] 陶汉之, 张承慧. 遮荫茶树光合特性研究[J]. 植物生理学通讯, 1986(6): 42-46. Tao H Z, Zhang C H.Study on the photosynthetic characteristics of shading tea plants[J]. Plant Physiology Communications, 1986(6): 42-46. [25] 王梅, 徐正茹, 张建旗, 等. 遮阴对10种野生观赏植物生长及生理特性的影响[J]. 草业科学, 2017, 34(5): 1008-1016. Wang M, Xu Z R, Zhang J Q, et al.Effect of shade on growth and physiological characteristics of 10 species of wild ornamental plants in Lanzhou[J]. Pratacultural Scinence, 2017, 34(5): 1008-1016. [26] Jeroen L, Johannes H, Sjef S.Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany, 2014, 65(3): 799-807. [27] 邱乾栋, 吕晓贞, 臧德奎, 等. 植物抗寒生理研究进展[J]. 山东农业科学, 2009(8): 53-57. Qiu Q D, Lv X Z, Zang D K, et al.Research progress on plant physiology of cold resistance[J]. Shandong Agricultural Sciences, 2009(8): 53-57. [28] Larkindale J, Huang B.Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of Plant Physiology, 2004, 161(4): 405-413. [29] 杨野, 郭再华, 耿明建, 等. 铝胁迫下不同耐铝小麦品种活性氧代谢差异及与小麦耐铝性的关系[J]. 生态环境学报, 2010, 19(1): 177-182. Yang Y, Guo Z H, Geng M J, et al.Difference in active oxygen metabolism of different aluminum-tolerant wheat varieties under aluminum stress and its relationship with aluminum tolerance[J]. Ecology and Environmental Sciences, 2010, 19(1): 177-182. [30] 周琳, 陈周一琪, 王玉花, 等. 光质对茶树愈伤组织中茶多酚及抗氧化酶活性的影响[J]. 茶叶科学, 2012, 32(3): 210-216. Zhou L, Chen Z Y Q, Wang Y H, et al. Effect of light quality on tea polyphenol content and activities of antioxidantive enzymes in tea callus[J]. Journal of Tea Science, 2012, 32(3): 210-216. [31] 屠幼英, 杨秀芳, 杨贤强. 茶树抗逆境生理与超氧歧化酶(SOD)的相关性[J]. 茶叶, 1996, 22(2): 40-43. Tu Y Y, Yang X F, Yang X Q.Correlation between the anti-stress biology of tea tree and superoxide dismutase (SOD)[J]. Journal of Tea, 1996, 22(2): 40-43. [32] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21): 7333-7341. Niu S Z, Song Q F, Fang W G, et al.Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333-7341. [33] 郭春芳, 孙云, 张云, 等. 茶树叶片抗氧化系统对土壤水分胁迫的响应[J]. 福建农林大学学报(自然科学版), 2008, 37(6): 580-586. Guo C F, Sun Y, Zhang Y, et al.Effects of soil water stress on the antioxidant system in leaves of tea plants (Camellia sinensis)[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008, 37(6): 580-586. [34] Yoshimura K, Yabuta Y, Ishikawa T, et al.Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J]. Plant Physiology, 2000, 123(1): 223-233. [35] 王亚丽, 仪慧兰, 韩彦莎. SO2对谷子幼苗根系镉胁迫的缓解作用[J]. 农业环境科学学报, 2017, 36(3): 443-448. Wang Y L, Yi H L, Han Y S.Sulfur dioxide alleviates cadmium toxicity in the roots of foxtail millet seedlings[J]. Journal of Agro-Environment Science, 2017, 36(3): 443-448. [36] Nalina M, Saroja S, Chakravarthi M, et al.Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition[J]. Acta Physiologiae Plant, 2021, 43(1): 10. doi: 10.1007/s11738-020-03174-1. |