[1] 叶乃兴. 茶学研究法[M]. 北京: 中国农业出版社, 2011. Ye N X.Research methods of tea science [M]. Beijing: China Agriculture Press, 2011. [2] Drew L.The growth of tea[J]. Nature, 2019, 566: s2-s4. [3] Chen J D, Zheng C, Ma J Q, et al.The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant[J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2. [4] Xia E H, Tong W, Wu Q, et al.Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020, 7: 7. doi: 10.1038/s41438-019-0225-4. [5] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877. [6] Wei C L, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. [7] Zhang Q J, Li W, Li K, et al.The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons to drive genome size evolution[J]. Molecular Plant, 2020, 13(7): 935-938. [8] Wang X, Feng H, Chang Y, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8. [9] Zhang W Y, Zhang Y J, Qiu H J, et al.Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communication, 2020, 11(1): 3719. doi: 10.1038/s41467-020-17498-6. [10] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants[J]. Molecular Plant, 2020, 13(7): 1013-1026. [11] Jia X, Zhang W, Fernie A R, et al.Camellia sinensis (Tea)[J]. Trends in Genetics, 2021, 37(1): 201-202. [12] Sanger F, Nicklen S, Coulson A R.DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467. [13] Arabidopsis G I.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815. [14] Venter J C, Adams M D, Myers E W, et al.The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351. [15] Lander E S, Linton L M, Birren B, et al.Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822): 860-921. [16] Yu J, Hu S, Wang J, et al.A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J]. Science, 2002, 296(5565): 79-92. [17] Tuskan G A, Difazio S, Jansson S, et al.The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604. [18] Jaillon O, Aury J, Noel B, et al.The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161): 463-467. [19] Ming R, Hou S, Feng Y, et al.The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)[J]. Nature, 2008, 452(7190): 991-996. [20] Paterson A H, Bowers J E, Bruggmann R, et al.The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556. [21] Schnable P S, Ware D, Fulton R S, et al.The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115. [22] Margulies M, Egholm M, Altman W E, et al.Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057): 376-380. [23] Levy S E, Myers R M.Advancements in next-generation sequencing[J]. Annual Review of Genomics and Human Genetics, 2016, 17: 95-115. [24] Huang S, Li R, Zhang Z, et al.The genome of the cucumber, Cucumis sativus L.[J]. Nature Genetics, 2009, 41(12): 1275-1281. [25] Argout X, Salse J, Aury J, et al.The genome of Theobroma cacao[J]. Nature Genetics, 2011, 43(2): 101-108. [26] Wang X, Wang H, Wang J, et al.The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics, 2011, 43(10): 1035-1039. [27] Varshney R K, Chen W, Li Y, et al.Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers[J]. Nature Biotechnology, 2011, 30(1): 83-89. [28] Xu Q, Chen L L, Ruan X, et al.The draft genome of sweet orange (Citrus sinensis)[J]. Nature Genetics, 2013, 45(1): 59-92. [29] Guo S, Zhang J, Sun H, et al.The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature Genetics, 2013, 45(1): 51-58. [30] 杨官品, 郭栗. 基因组的测序技术及其发展趋势[J]. 中国海洋大学学报(自然科学版), 2017, 47(s1): 48-57. Yang G P, Guo L.Technologies available for genome sequencing and their advancements[J]. Periodical of Ocean University of China, 2017, 47(s1): 48-57. [31] Levy S E, Boone B E.Next-generation sequencing strategies[J]. Cold Spring Harbor Perspectives in Medicine, 2019, 9(7): a25791. doi: 10.1101/cshperspect.a025791. [32] Wenger A M, Peluso P, Rowell W J, et al.Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome[J]. Nature Biotechnology, 2019, 37(11): 1155-1162. [33] Zhang J S, Zhang X T, Tang H B, et al.Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genetics, 2018, 50(11): 1565-1573. [34] Zhang X, Wang G, Zhang S, et al.Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution[J]. Cell, 2020, 183(4): 875-889. [35] Chen H T, Zeng Y, Yang Y Z, et al.Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nature Communications, 2020, 11(1): 2494. doi: 10.1038/s41467-020-16338-x. [36] Burton J N, Adey A, Patwardhan R P, et al.Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions[J]. Nature Biotechnology, 2013, 31(12): 1119-1125. [37] Dong Y, Xie M, Jiang Y, et al.Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)[J]. Nature Biotechnology, 2013, 31(2): 135-141. [38] 陈萍. BioNano图谱数据建模及光学图谱在水稻基因组的应用研究[D]. 北京: 中国科学院大学, 2019. Chen P.BioNano data modeling and application research of optical atlas in rice genome [D]. Beijing: Chinese Academy of Sciences University, 2019. [39] Kronenberg Z N, Rhie A, Koren S, et al.Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C[J]. Nature Communications, 2021, 12(1): 1935. doi: 10.1038/s41467-020-20536-y. [40] Zhang X T, Wu R X, Wang Y B, et al.Unzipping haplotypes in diploid and polyploid genomes[J]. Computational and Structural Biotechnology Journal, 2019, 18: 66-72. [41] Zhang X T, Zhang S C, Zhao Q, et al.Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data[J]. Nature Plants, 2019, 5(8): 833-845. [42] Xia E, Li F, Tong W, et al.The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data[J]. Scientific Data, 2019, 6(1): 122. doi: 10.1038/s41597-019-0127-1. [43] Xia E H, Li F D, Tong W, et al.Tea Plant Information Archive (TPIA): A comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. [44] Wang P, Yu J, Jin S, et al.Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome[J]. Horticulture Research, 2021, 8: 107. doi: 10.1038/s41438-021-00542-x. [45] Zhang X.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant, Camellia sinensis[J]. Nature Genetics, 2021. doi: 10.1038/s41588-021-00895-y. [46] Wang P, Jin S, Chen X, et al.Chromatin accessibility and translational landscapes of tea plants under chilling stress[J]. Horticulture Research, 2021, 8: 96. doi: 10.1038/s41438-021-00542-x. [47] Zhou Q, Tang D, Huang W, et al.Haplotype-resolved genome analyses of a heterozygous diploid potato[J]. Nature Genetics, 2020, 52(10): 1018-1023. [48] Zhang W, Luo C, Scossa F, et al.A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants[J]. Plant Journal, 2020, 105(1): 197-208. [49] Huang X H, Yang S H, Gong J Y, et al.Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis[J]. Nature Communications, 2015, 6: 6258. doi: 10.1038/ncomms7258. [50] Shao L, Xing F, Xu C, et al.Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5653-5658. [51] Zheng Y C, Wang P J, Chen X J, et al.Transcriptome and metabolite profiling reveal novel insights into volatile heterosis in the tea plant (Camellia sinensis)[J]. Molecules, 2019, 24(18): 3380. doi: 10.3390/molecules24183380. [52] 叶乃兴. 乌龙茶种质资源的利用与品种创新[J]. 福建茶叶, 2006(3): 2-4. Ye N X.Utilization of oolong tea germplasm resources and cultivar innovation[J]. Tea In Fujian, 2006(3): 2-4. [53] Zeng L, Zhou X, Su X, et al.Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food Science and Technology, 2020, 106: 242-253. [54] 王让剑, 杨军, 孔祥瑞, 等. 利用SSR标记分析金观音(半)同胞茶树品种遗传差异[J]. 茶叶科学, 2017, 37(2): 139-148. Wang R J, Yang J, Kong X R, et al.Genetic analysis of full- and half-sib families of tea cultivar jinguanyin based on SSR molecular markers[J]. Journal of Tea Science, 2017, 37(2): 139-148. [55] 姚雪倩, 郑玉成, 王鹏杰, 等. 金观音与其亲本差异基因表达的遗传分析[J]. 福建农林大学学报(自然科学版), 2019, 48(2): 155-160. Yao X Q, Zheng Y C, Wang P J, et al.Genetic analysis of differential gene expression between Jinguanyin and its parents[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(2): 155-160. [56] 郭吉春, 杨如兴, 张文锦, 等. 茶树杂交种金观音与黄观音的选育及应用[J]. 贵州科学, 2008, 26(2): 20-24. Guo J C, Yang R X, Zhang W J, et al.Breeding and application of two tea hybrid Jinguanyin and Huangguanyin[J]. Guizhou Science, 2008, 26(2): 20-24. [57] 郭吉春, 叶乃兴, 何孝延. 茶树杂交一代展叶期的遗传变异[J]. 茶叶科学, 2004, 24(4): 255-259. Guo J C, Ye N X, He X Y.Genetic variation in the leaf-expansion period of the first hybrid generation tea plants[J]. Journal of Tea Science, 2004, 24(4): 255-259. [58] 陈荣冰, 黄福平, 陈常颂, 等. 高香型优质乌龙茶新品系瑞香选育简报[J]. 茶叶科学, 2004, 24(1): 29-32. Chen R B, Huang F P, Chen C S, et al.Breeding report on strong aroma and good quality newly bred oolong variety Rui xiang[J]. Journal of Tea Science, 2004, 24(1): 29-32. [59] 钟秋生, 林郑和, 陈常颂, 等. “春闺”绿茶香气成分鉴定分析[J]. 茶叶通讯, 2021, 48(1): 33-39. Zhong Q S, Lin Z H, Chen C S, et al.Identification and analysis of aroma components in Chungui green tea[J]. Journal of Tea Communication, 2021, 48(1): 33-39. [60] Chen X, Wang P, Zheng Y, et al.Comparison of metabolome and transcriptome of flavonoid biosynthesis pathway in a purple-leaf tea germplasm Jinmingzao and a green-leaf tea germplasm Huangdan reveals their relationship with genetic mechanisms of color formation[J]. International Journal of Molecular Sciences, 2020, 21(11): 4167. doi: 10.3390/ijms21114167. [61] 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播[J]. 生物多样性, 2018, 26(4): 357-372. Zhang W J, Rong J, Wei C L, et al.Domestication origin and spread of cultivated tea plants[J]. Biodiversity Science, 2018, 26(4): 357-372. [62] 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. Tang D, Zhou Q.Research advances in plant genome assembly[J]. Biotechnology Bulletin, 2021, 37(6): 1-12. [63] Ma J, Yao M, Ma C, et al.Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis)[J]. PLoS One, 2016, 9(3): e93131. doi: 10.1371/journal.pone.0093131. [64] 李小杰, 马建强, 姚明哲, 等. 茶氨酸合成酶基因的SNP挖掘和遗传定位[J]. 茶叶科学, 2017, 37(3): 251-257. Li X J, Ma J Q, Yao M Z, et al.SNP detection and mapping of theanine synthetase gene in tea plant[J]. Journal of Tea Science, 2017, 37(3): 251-257. [65] Xu L, Wang L, Wei K, et al.High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing[J]. BMC Genomics, 2018, 19(1): 955. doi: 10.1186/s12864-018-5291-8. [66] Fang K, Xia Z, Li H, et al.Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites[J]. Horticulture Research, 2021, 8(1): 42. doi: 10.1038/s41438-021-00477-3. |