[1] 王新超, 姚明哲, 马春雷, 等. 我国苦茶资源主要生化成分的鉴定评价[J]. 中国农学通报, 2008, 24(6): 65-69. Wang X C, Yao M Z, Ma C L, et al.Analysis and evaluation of biochemical components in bitter tea plant germplasms[J]. Chinese Agricultural Science Bulletin, 2008, 24(6): 65-69. [2] 汪云刚, 刘本英, 宋维希, 等. 云南茶组植物的分布[J]. 西南农业学报, 2010, 23(5): 1750-1753. Wang Y G, Liu B Y, Song W X, et al.Distribution of Sect. Thea (L.) Dyer in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5): 1750-1753. [3] 漠丽萍. 勐海县苦茶资源现状及开发利用探析[J]. 现代农业科技, 2017(13): 27-28. Mo L P.Discussion on resource status and development and utilization of Camellia assamica var. kucha in Menghai County[J]. Modern Agricultural Science and Technology, 2017(13): 27-28. [4] Wang S L, Chen J D, Ma J Q, et al.Novel insight into theacrine metabolism revealed by transcriptome analysis in bitter tea (Kucha, Camellia sinensis)[J]. Scientific Reports, 2020, 10(1): 6286. doi: 10.1038/s41598-020-62859-2. [5] 叶创兴, 林永成, 苏建业, 等. 苦茶Camellia assamica var. kucha Chang et Wang的嘌呤生物碱[J]. 中山大学学报(自然科学版), 1999, 38(5): 82-86. Ye C X, Lin Y C, Su J Y, et al.Purine alkaloids in Camellia assamica var. kucha Chang et Wang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1999, 38(5): 82-86. [6] 叶创兴, Ashihara H, 郑新强, 等. 一种野生茶树的新嘌呤碱模式[J]. 中山大学学报(自然科学版), 2003, 42(1): 62-65. Ye C X, Ashihara H, Zheng X Q, et al.New discovery of pattern of purine alkaloids in wild tea tree[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(1): 62-65. [7] 李红建, 秦丹丹, 姜晓辉, 等. 广东苦茶资源嘌呤生物碱含量分析与评价[J]. 茶叶科学, 2021, 41(1): 71-79. Li H J, Qin D D, Jiang X H, et al.Analysis and evaluation of purine alkaloid contents in bitter tea germplasm resources from Guangdong[J]. Journal of Tea Science, 2021, 41(1): 71-79. [8] Jin J Q, Jiang C K, Yao M Z, et al.Baiyacha, a wild tea plant naturally occurring high contents of theacrine and 3″-methyl-epigallocatechin gallate from Fujian, China[J]. Scientific Reports, 2020, 10(1): 9715. doi: 10.1038/s41598-020-66808-x. [9] 井娟, 王庆伟, 胡聪, 等. 1,3,7,9-四甲基尿酸的研究进展[J]. 中国药师, 2016, 19(2): 344-346. Jing J, Wang Q W, Hu C, et al.Research Progress in Theacrine[J]. China Pharmacist, 2016, 19(2): 344-346. [10] Qiao H Y, Ye X S, Bai X Y, et al.Theacrine: a purine alkaloid from Camellia assamica var. kucha with a hypnotic property via the adenosine system[J]. Neuroscience Letters, 2017, 659: 48-53. [11] Xu J K, Kurihara H, Zhao L, et al.Theacrine, a special purine alkaloid with sedative and hypnotic properties from Camellia assamica var. kucha in mice[J]. Journal of Asian Natural Products Research, 2007, 9(7): 665-672. [12] 谢果, 吴敏芝, 黄映如, 等. 1,3,7,9-四甲基尿酸抗抑郁作用的实验研究[J]. 中国药理学通报, 2009, 25(9): 1160-1163. Xie G, Wu M Z, Huang Y R, et al.Experim ental study of theacrine on antidepressant effects[J]. Chinese Pharmacological Bulletin, 2009, 25(9): 1160-1163. [13] Wang Y Y, Yang X R, Zheng X Q, et al.Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities[J]. Fitoterapia, 2010, 81(6): 627-631. [14] Li W X, Li Y F, Zhai Y J, et al.Theacrine, a purine alkaloid obtained from Camellia assamica var. kucha, attenuates restraint stress-provoked liver damage in mice[J]. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6328-6335. [15] Feduccia A A, Wang Y, Simms J A, et al.Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors[J]. Pharmacology Biochemistry and Behavior, 2012, 102(2): 241-248. [16] 陈潇敏, 王鹏杰, 王淑燕, 等. 基于转录组的蕉城苦茶苦茶碱合成相关基因的挖掘[J/OL]. 应用与环境生物学报: 1-12[2021-04-01].https://doi.org/10.19675/j.cnki.1006-687x.2020.05041. Chen X M, Wang P J, Wang S Y, et al. Excavation of genes involved in theacrine biosynthesis of Jiaochengkucha based on transcriptome [J/OL]. Chinese Journal of Applied and Environmental Biology: 1-12[2021-04-01]. https://doi.org/10.19675/j.cnki.1006-687x.2020.05041. [17] Zhang Y H, Li Y F, Wang Y J, et al.Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea[J]. Nature Communications, 2020, 11(1): 1473. doi: 10.1038/s41467-020-15324-7. [18] Jin J Q, Ma J Q, Ma C L, et al.Determination of catechin content in representative Chinese tea germplasms[J]. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9436-9441. [19] Liu Y F, Pang D D, Tian Y P, et al.Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion[J]. Hereditas, 2020, 157: 39. doi: 10.1186/s41065-020-00153-x. [20] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [21] Reiner A, Yekutieli D, Benjamini Y.Identifying differentially expressed genes using false discovery rate controlling procedures[J]. Bioinformatics, 2003, 19(3): 368-375. [22] Jin J P, Tian F, Yang D C, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants [J]. Nucleic Acids Research, 2017, 45(D1): D1040-D 1045. [23] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-42-1-41/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. [24] 金基强, 周晨阳, 马春雷, 等. 我国代表性茶树种质嘌呤生物碱的鉴定[J]. 植物遗传资源学报, 2014, 15(2): 279-285. Jin J Q, Zhou C Y, Ma C L, et al.Identification on purine alkaloids of representative tea germplasms in China[J]. Journal of Plant Genetic Resources, 2014, 15(2): 279-285. [25] Wu H Y, Shi N R, An X Y, et al.Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling[J]. International Journal of Molecular Sciences, 2018, 19(6): 1954. doi: 10.3390/ijms19061594. [26] 刘平. 茶树N-甲基转移酶基因启动子克隆、功能分析及转录因子分离[D]. 广州: 华南农业大学, 2018. Liu P.Cloning, functional analysis and isolation of transcription factors of N-methyltransferase gene promoter in tea plants (Camellia sinensis) [D]. Guangzhou: South China Agricultural University, 2018. [27] 康馨, 刘平, 马雯慧, 等. RNAi沉默CsHB1降低茶树叶片愈伤组织咖啡碱积累[J]. 园艺学报, 2020, 47(12): 2373-2384. Kang X, Liu P, Ma W H, et al.RNAi silencing CsHB1 reduces the accumulation of caffeine in tea callus[J]. Acta Horticulturae Sinica, 2020, 47(12): 2373-2384. [28] 刘玉飞, 金基强, 姚明哲, 等. 茶树咖啡碱合成酶基因稀有等位变异TCS1g的筛选、克隆及功能[J]. 中国农业科学, 2019, 52(10): 1772-1783. Liu Y F, Jin J Q, Yao M Z, et al.Screening, cloning and functional research of the rare allelic variation of caffeine synthase gene (TCS1g) in tea plants[J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783. |