[1] Chen L, Magliano D J, Zimmet P Z.The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives[J]. Nature Reviews Endocrinology, 2012, 8(4): 228-236. [2] Cho N H, Shaw J E, Karuranga S, et al.IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281. [3] Martin R, Langella P.Emerging health concepts in the probiotics field: streamlining the definitions[J]. Frontiers in Microbiology, 2019, 10: 1047. doi: 10.3389/fmicb.2019.01047. [4] Zhao L P, Zhang F, Ding X Y, et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156. [5] 郭虹雯, 许翔雨, 陈莹婕, 等. 绿茶茶汤对肥胖相关肠道菌群的影响[J]. 茶叶科学, 2016, 36(4): 354-362. Guo H W, Xu X Y, Chen Y J, et al.Effect of green tea infusions on obesity-associated gut microbiota[J]. Jornal of Tea Science, 2016, 36(4): 354-362. [6] 唐飞, 艾于杰, 张善明, 等. 不同年份青砖茶改善小鼠胃肠道功能的研究[J]. 华中农业大学学报, 2018, 37(1): 82-88. Tang F, Ai Y J, Zhang S M, et al.Effect of storage time of dark brick tea on improving gasintestinal function in mice[J]. Journal of Huazhong Agricultural University, 2018, 37(1): 82-88. [7] 路晓杰, 刘久茜, 曹永国, 等. 普洱熟茶提取物对实验性非酒精性脂肪肝鼠脂代谢指标及肠道菌群的调节作用[J]. 中国兽医学报, 2018, 38(4): 751-758. Lu X J, Liu J X, Cao Y G, et al.Pu-er extrat modulating lipid metabolism and gut microbiota in fatty liver disease mice[J]. Chinese Journal of Veterinary Science, 2018, 38(4): 751-758. [8] 马玉仙, 蒋慧颖, 曾文治, 等. 武夷岩茶对糖尿病大鼠肠道菌群的调节作用[J]. 福建农林大学学报(自然科学版), 2019, 48(1): 22-27. Ma Y X, Jiang H Y, Zeng W Z, et al.Regulatory effect of Wuyi rock tea on intestinal bacteria in diabetic rat[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(1): 22-27. [9] Liu Z B, Chen Z C, Guo H W, et al.The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice[J]. Food & Function, 2016, 7(12): 4869-4879. [10] 傅冬和, 刘仲华, 黄建安, 等. 茯砖茶加工过程中主要化学成分的变化[J]. 食品科学, 2008, 29(2): 64-67. Fu D H, Liu Z H, Huang J A, et al.Variations of components of Fuzhuan tea during processing[J]. Food Science, 2008, 29(2): 64-67. [11] 黄颂, 刘仲华, 黄建安, 等. 茯茶水提物对Ⅱ型糖尿病小鼠糖代谢紊乱的干预作用[J]. 茶叶科学, 2016, 36(3): 250-260. Huang S, Liu Z H, Huang J A, et al.Intervention effects of Fuzhuan brick tea water extract on glucose metabolism disorder in a mouse model of type Ⅱ diabetes mellitus[J]. Jornal of Tea Science, 2016, 36(3): 250-260. [12] Liu D, Huang J, Luo Y, et al.Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2019, 67(49): 13589-13604. [13] 侯爱香, 颜道民, 孙静文, 等. 绿茶、红茶和茯砖茶水提物对肠道微生物体外发酵特性的影响[J]. 茶叶科学, 2019, 39(4): 403-414. Hou A X, Yan D M, Sun J W, et al.Effects of green, black and Fu brick tea aqueous extracts on the characteristics of intestinal microbiota during in vitro fermentation[J]. Jornal of Tea Science, 2019, 39(4): 403-414. [14] 王黎明, 夏文水. 蒽酮-硫酸法测定茶多糖含量的研究[J]. 食品科学, 2005, 26(7): 185-188. Wang L M, Xia W S.Determination of TPS by improvement of anthrone-sulfuric acid method[J]. Food Science, 2005, 26(7): 185-188. [15] Uaman H, Ullah M A, Jan H, et al.Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities of Solanum xanthocarpum callus cultures[J]. Molecules, 2020, 25(9): 2201. doi: 10.3390/molecules25092201. [16] 游见明, 曹新志. 福林酚法测定茶树中茶多酚的分布水平[J]. 湖北农业科学, 2013, 52(10): 2417-2419. You J M, Cao X Z.Analysis on the distribution of tea polyphenol in tea tree by Folin-Ciocalteaut method[J]. Hubei Agricultural Science, 2013, 52(10): 2417-2419. [17] Bhate A, Parker D J, Bebee T W, et al.ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation[J]. Nature Communications, 2015, 6: 8768. doi: 10.1038/ncomms9768. [18] 栗志文, 王媛媛, 王根辈, 等. 普洱茶提取物与绿茶提取物降糖功效的研究[J]. 茶叶科学, 2014, 34(5): 428-434. Li Z W, Wang Y Y, Wang G B, et al.Study of the hypoglycemic effect of Pu′er tea and green tea extracts[J]. Jornal of Tea Science, 2014, 34(5): 428-434. [19] Cao Y, Yao G, Sheng Y, et al.JinQi jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice[J]. Journal of Diabetes Research, 2019: 1872134. doi: 10.1155/2019/1872134. [20] Qin J, Li Y, Cai Z, et al.A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60. [21] Ouyang J, Lin J, Isnard S, et al.The bacterium Akkermansia muciniphila: a sentinel for gut permeability and its relevance to HIV-related inflammation[J]. Frontiers in Immunology, 2020, 11: 645. doi: 10.3389/fimmu.2020.00645. [22] Salguero M V, Alobaide M A I, Singh R, et al. Dysbiosis of gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease[J]. Experimental and Therapeutic Medicine, 2019, 18(5): 3461-3469. [23] Derrien M, Vaughan E E, Plugge C M, et al.Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5): 1469-1476. [24] Derrien M, Belzer C, De Vos W M. Akkermansia muciniphila and its role in regulating host functions[J]. Microbial Pathogenesis, 2017, 106: 171-181. [25] Tirosh A, Calay E S, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans [J]. Science Translational Medicine, 2019, 11(489): eaav0120. doi: 10.1126/scitranslmed.aav0120. [26] Shams S, Foley K A, Kavaliers M, et al.Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: contribution to a rodent model of autism spectrum disorder[J]. Developmental Psychobiology, 2019, 61(5): 688-699. [27] Murri M, Leiva I, Miguel Gomez-Zumaquero J, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study[J]. BMC Medicine, 2013, 11: 46. doi: 10.1186/1741-7015-11-46. [28] Zhang H, Dibaise J K, Zuccolo A, et al.Human gut microbiota in obesity and after gastric bypass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2365-2370. [29] Groer M W, Luciano A A, Dishaw L J, et al.Development of the preterm infant gut microbiome: a research priority[J]. Microbiome, 2014, 2(1): 38. doi: 10.1186/2049-2618-2-38. [30] Castaner O, Goday A, Park Y M, et al.The gut microbiome profile in obesity: a systematic review[J]. International Journal of Endocrinology, 2018, 2018: 4095789. doi: 10.1155/2018/4095789. [31] Louis P, Flint H J.Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. Fems Microbiology Letters, 2009, 294(1): 1-8. [32] Asarat M, Apostolopoulos V, Vasiljevic T, et al.Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro[J]. Immunological Investigations, 2016, 45(3): 205-222. [33] Van Herreweghen F, Van Den Abbeele P, De Mulder T, et al. In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent[J]. Beneficial Microbes, 2017, 8(1): 81-96. [34] Ren D W, Li L, Schwabacher A W, et al.Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222[J]. Steroids, 1996, 61(1): 33-40. [35] Pfeiffer N, Desmarchelier C, Blaut M, et al.Acetatifactor muris gen. nov., sp nov., a novel bacterium isolated from the intestine of an obese mouse[J]. Archives of Microbiology, 2012, 194(11): 901-907. [36] Zhao C, Qu Q, Yang F, et al.Monascus ruber fermented Panax ginseng ameliorates lipid metabolism disorders and modulate gut microbiota in rats fed a high-fat diet[J]. Journal of Ethnopharmacology, 2021, 278: 114300. doi: 10.1016/j.jep.2021.114300. [37] Ruiz L, Margolles A, Sanchez B.Bile resistance mechanisms in Lactobacillus and Bifidobacterium[J]. Frontiers in Microbiology, 2013, 4: 396. doi: 10.3389/fmicb.2013.00396. [38] Wen K, Tao L, Tao Z, et al.Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 535310. doi: 3389/fcimb.2020.535310. [39] Wegner K, Just S, Gau L, et al.Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria[J]. Analytical and Bioanalytical Chemistry, 2017, 409(5): 1231-1245. [40] Jia W, Xie G X, Jia W P.Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(2): 111-128. [41] Thomas C, Pellicciari R, Pruzanski M, et al.Targeting bile-acid signalling for metabolic diseases[J]. Nature Reviews Drug Discovery, 2008, 7(8): 678-693. [42] Han Y, Zhao M, Ouyang K H, et al.Sulfated modification, structures, antioxidant activities and mechanism of Cyclocarya paliurus polysaccharides protecting dendritic cells against oxidant stress[J]. Industrial Crops and Products, 2021, 164: 113353. doi: 10.1016/j.indcrop.2021.113353. [43] Chen J, Huang C L, Wang J J, et al.Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats[J]. Plos One, 2017, 12(4): e0176583. doi: 10.1371/journal.pone.0176583. [44] Kang X, Zhao L B, Lu X G, et al.Characteristics of gastric microbiota in GK rats with spontaneous diabetes: a comparative study[J]. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy, 2020, 13: 1435-1447. |