[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China: An updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6): 521-545. [2] 廖梦阳, 程龙献, 廖玉华. 肾素-血管紧张素系统的回顾[J]. 临床心血管病杂志, 2012, 28(2): 83-87. Liao M Y, Cheng L X, Liao Y H.Review of renin-angiotensin system[J]. Journal of Clinical Cardiology, 2012, 28(2): 83-87. [3] Actis-Goretta L, Ottaviani J I, Fraga C G.Inhibition of angiotensin converting enzyme activity by flavanol-rich foods[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1): 229-234. [4] 于志鹏, 赵文竹, 刘博群, 等. 血管紧张素转化酶抑制肽研究进展[J]. 食品科学, 2010, 31(11): 308-311. Yu Z P, Zhao W Z, Liu B Q, et al.Research progress of angiotensin converting enzyme inhibitory peptides[J]. Food Science, 2010, 31(11): 308-311. [5] DianaI M, Quilez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review[J]. Journal of Functional Foods, 2014, 10: 407-420. [6] Abe Y, Umemura S, Sugimoto K, et al.Effect of green tea rich in γ-aminobutyric acid on blood pressure of dahl salt-sensitive rats[J]. American Journal of Hypertension, 1995, 8(1): 74-79. [7] 林智, 大森正司. γ-氨基丁酸茶成分对大鼠血管紧张素I转换酶(ACE)活性的影响[J]. 茶叶科学, 2002,22(1): 43-46. Lin Z, Masashi O.Effects of Gabaron tea components on angiotension I-converting enzyme activity in rat[J]. Journal of Tea Science, 2002, 22(1): 43-46. [8] Zareian M, Oskoueia E, Forghani B, et al.Production of a wheat-based fermented rice enriched with γ-amino butyric acid using lactobacillus plantarum MNZ and its antihypertensive effects in spontaneously hypertensive rats[J]. Journal of Functional Foods, 2015, 16: 194-203. [9] Zareian M, Oskoueia E, Majdinasab M, et al.Production of GABA-enriched Idli with ACE inhibitory and antioxidant properties using Aspergillus Oryzae: the antihypertensive effects in spontaneously hypertensive rats[J]. Food & Function, 2020, 11(5): 4304-4313. [10] Yu Z, Yang Z.Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia Sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(5): 844-858. [11] 林智, 大森正司. γ-氨基丁酸茶(Gabaron Tea)降血压机理的研究[J]. 茶叶科学, 2001, 21(2): 153-156, 136. Lin Z, Masashi O.Study on the functional mechanism of Gabaron tea on hypertension[J]. Journal of Tea Science, 2001, 21(2): 153-156, 136. [12] 高玉佩, 朱澄澄, 马煜明, 等. 高γ-氨基丁酸含量白茶的茶树品种适制性及工艺研究初探[J]. 中国茶叶加工, 2017(2): 5-10. Gao Y P, Zhu C C, Ma Y M, et al.Primary research on processing and processing suitability of white tea cultivars with high GABA content[J]. China Tea Processing, 2017(2): 5-10. [13] 林智, 林钟鸣, 尹军峰, 等. 厌氧处理对茶叶中γ-氨基丁酸含量及其品质的影响[J]. 食品科学, 2004, 25(2): 35-39. Lin Z, Lin Z M, Yin J F, et al.Influence of anaerobic treatment on the amount of γ-aminobutyric acid and the quality of tea[J]. Food Science, 2004, 25(2): 35-39. [14] 张金玉, 李美凤, 郜秋艳, 等. 不同厌氧时间对绿茶和红茶加工品质的影响[J]. 茶叶学报, 2021, 62(2): 78-84. Zhang J Y, Li M F, Gao Q Y, et al.Effect of anaerobic treatment time on quality of green and black teas[J]. Acta Tea Sinica, 2021, 62(2): 78-84. [15] 沈强, 潘科, 郑文佳, 等. 厌氧/好氧处理对茶叶中GABA含量富集及其品质的影响研究[J]. 西南大学学报(自然科学版), 2012, 34(9): 146-152. Shen Q, Pan K, Zheng W J, et al.Effect of anaerobic and aerobic treatment on γ-aminobutyric acid enrichment in tea and on its quality[J]. Journal of Southwest University (Natural Science Edition), 2012, 34(9): 146-152. [16] Wu Q Y, Ma S Z, Zhang W W, et al.Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves[J]. Food Chemistry, 2018, 240: 1081-1086. [17] 吴琴燕, 杨敬辉, 陈宏州, 等. 叶面肥喷施对茶叶中GABA含量的影响[J]. 食品研究与开发, 2013, 34(16): 1-3. Wu Q Y, Yang J H, Chen H Z, et al.Influence of different foliar fertilizers application on γ-aminobutyric acid content in tea[J]. Food Research and Development, 2013, 34(16): 1-3. [18] Zhao M, Ma Y, Wei Z, et al.Determination and comparison of γ-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea[J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3641-3648. [19] Wang H F, Tsai Y S, Lin M L, et al.Comparison of bioactive components in GABA tea and green tea produced in Taiwan[J]. Food Chemistry, 2006, 96(4): 648-653. [20] Srinivas S M, Harohally N V.Improved synthesis of lysine- and arginine-derived amadori and heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(6): 1522-1527. [21] Murray B A, Walsh D J, Fitzgerald R J.Modification of the furanacryloyl-l-phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity[J]. Journal of Biochemical and Biophysical Methods, 2004, 59(2): 127-137. [22] Yu J, Zhang S, Zhang L.Amadori compounds as potent inhibitors of angiotensin-converting enzyme (ACE) and their effects on anti-ACE activity of bell peppers[J]. Journal of Functional Foods, 2016, 27: 622-630. [23] Vermeirssen V, van Camp J, Verstraete W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides[J]. Journal of Biochemical and Biophysical Methods, 2002, 51(1): 75-87. [24] Wolfe K L, Liu R H.Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22): 8896-8907. [25] 杨冬梅, 金月亭, 柯乐芹, 等. 12种常见蔬菜抗氧化活性的比较研究[J]. 中国食品学报, 2007, 7(5): 24-29. Yang D M, Jin Y T, Ke L J, et al.Antioxidant activities of 12 common vegetables[J]. Journal of Chinese Institute of Food Science and Technology, 2007, 7(5): 24-29. [26] 李楠, 师俊玲, 王昆. 14种海棠果实多酚种类及体外抗氧化活性分析[J]. 食品科学, 2014, 35(5): 53-58. Li N, Shi J L, Wang K.Composition and in vitro antioxidant activity of polyphenols extracted from crabapple[J]. Food Science, 2014, 35(5): 53-58. [27] 蔡萌, 杜双奎, 柴岩, 等. 黄土高原小粒大豆抗氧化活性研究[J]. 中国食品学报, 2014, 14(8): 108-115. Cai M, Du S K, Chai Y, et al.Studies on antioxidant activity of small soybean from the loess plateau[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(8): 108-115. [28] 张华, 周志钦, 席万鹏. 15种柑橘果实主要酚类物质的体外抗氧化活性比较[J]. 食品科学, 2015, 36(11): 64-70. Zhang H, Zhou Z Q, Xi W P.Comparison of antioxidant activity in vitro of 15 major phenolic compounds in citrus fruits[J]. Food Science, 2015, 36(11): 64-70. [29] Khan M I R, Jalil S U, Chopra P, et al. Role of GABA in plant growth, development and senescence[J]. Plant Gene, 2021, 26: 100283. doi:10.1016/j.plgene.2021.100283. [30] Liao J, Wu X, Xing Z, et al.γ-aminobutyric acid (GABA) accumulation in tea (Camellia Sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia[J]. Journal of Agricultural and Food Chemistry, 2017, 65(14): 3013-3018. [31] Mustroph A, Barding Jr G A, Kaiser K A, et al. Characterization of distinct root and shoot responses to low-oxygen stress in arabidopsis with a focus on primary C- and N-metabolism[J]. Plant, Cell & Environment, 2014, 37(10): 2366-2380. [32] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 88-107. Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015: 88-107. [33] Dai W, Xie D, Lin Z, et al.A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea[J]. LWT, 2020, 126: 109313. doi: 10.1016/j.lwt.2020.109313. [34] Chen Q, Zhang Y, Tao M, et al.Comparative metabolic responses and adaptive strategies of tea leaves (Camellia Sinensis) to N2 and CO2 anaerobic treatment by a nontargeted metabolomics approach[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9565-9572. [35] Yilmaz C, Özdemir F, Gökmen V.Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing[J]. LWT, 2020, 117: 108655. doi: 10.1016/j.lwt.2019.108655. [36] Dong J, Xu X, Liang Y, et al.Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia Sinensis) and links to processing method[J]. Food & Function, 2011, 2(6): 310. doi: 10.1039/c1fo10023h. [37] 高玉萍, 唐德松, 龚淑英. 茶提取物抗氧化活性与茶多酚、儿茶素关系探究[J]. 中国食品学报, 2013, 13(6): 40-47. Gao Y P, Tang D S, Gong S Y.The research of the relationship between antioxidation of tea extractive and tea polyphenols as well as catechins[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(6): 40-47. [38] Wang Y, Kan Z, Thompson H J, et al.Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5423-5436. [39] 夏春燕, 郭晓晖, 李富华, 等. 细胞抗氧化活性方法在食物抗氧化活性评价中的研究进展[J]. 食品科学, 2012, 33(15): 297-302. Xia C Y, Guo X H, Li F H, et al.Research progress of cellular antioxidant activity assay for antioxidant evaluation of foods[J]. Food Science, 2012, 33(15): 297-302. [40] 陈挺强, 刘淑敏, 黄惠华. 绿茶与红茶浸提液功能性成分含量和抗氧化能力的差异研究[J]. 现代食品科技, 2014, 30(10): 141-146, 193. Chen T Q, Liu S M, Huang H H.Comparative evaluation of functional components and antioxidant activity between green and black tea extracts[J]. Modern Food Science and Technology, 2014, 30(10): 141-146, 193. [41] Carloni P, Tiano L, Padella L, et al.Antioxidant activity of white, green and black tea obtained from the same tea cultivar[J]. Food Research International, 2013, 53(2): 900-908. [42] Shahidi F, Zhong Y.Measurement of antioxidant activity[J]. Journal of Functional Foods, 2015, 18: 757-781. |