[1] Werker E.Trichome diversity and development[J]. Adv Bot Res, 2000, 31: 1-35. [2] Serna L, Martin C.Trichomes: different regulatory networks lead to convergent structures[J]. Trends Plant Sci, 2006, 11(6): 274-280. [3] Schilmiller A, Last R, Pichersky E.Harnessing plant trichome biochemistry for the production of useful compounds[J]. Plant J, 2008, 54(4): 702-711. [4] Ishida T, Kurata T, Okada K, et al.A genetic regulatory network in the development of trichomes and root hairs[J]. Annu Rev Plant Biol, 2008, 59: 365-386. [5] 曹敏, 张璐, 高新梅, 等. 植物表皮毛发育分子调控机制的研究进展[J]. 安徽农业科学, 2013, 41(10): 4231-4235. Cao M, Zhang L, Gao X M, et al.Advances in molecular regulation of plant trichome development[J]. Journal of Anhui Agricultural Sciences, 2013, 41(10): 4231-4235. [6] Wagner G, Wang E, Shepherd R.New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Ann Bot, 2004, 93(1): 3-11. [7] Fernandez V, Sancho-Knapik D, Guzman P, et al.Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age[J]. Plant Physiol, 2014, 166(1): 168-180. [8] Svetlikova P, Hajek T, Tesitel J.Hydathodetrichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae[J]. Ann Bot, 2015, 116(1): 61-68. [9] Dayan F, Duke S.Trichomes and root hairs: natural pesticide factories[J]. Pesticide Outlook, 2003, 14(4): 175. doi:10.1039/b308491b. [10] Bleeker P, Mirabella R, Diergaarde P, et al.Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative[J]. Proc Natl Acad Sci U S A, 2012, 109(49): 20124-20129. [11] Luu V, Weinhold A, Ullah C, et al.O-acyl sugars protect a wild tobacco from both native fungal pathogens and a specialist herbivore[J]. Plant physiology, 2017, 174(1): 370-386. [12] Yamasaki S, Murakami Y.Continuous UV-B irradiation induces endoreduplicationand trichome formation in cotyledons, and reduces epidermal cell division and expansion in the first leaves of pumpkin seedlings (Cucurbita maxima Duch.×C. moschata Duch.)[J]. Environmental Control in Biology, 2014, 52(4): 203-209. [13] Weathers P, Arsenault P, Covello P, et al.Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases[J]. Phytochem Rev, 2011, 10(2): 173-183. [14] Mellon J, Zelaya C, Dowd M, et al.Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi[J]. J Agric Food Chem, 2012, 60(10): 2740-2745. [15] Chalvin C, Drevensek S, Dron M, et al.Genetic control of glandular trichome development[J]. Trends Plant Sci, 2020, 25(5): 477-487. [16] Schellmann S, Hulskamp M.Epidermal differentiation: trichomes in Arabidopsis as a model system[J]. Int J DevBiol, 2005, 49(5/6): 579-584. [17] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展[J]. 中国农业科学, 2016, 49(22): 4310-4322. Yang J, Ma S Y, Wang S F.Advances in studies on genes related to cotton fiber quality improvement[J]. Chinese Agricultural Sciences, 2016, 49(22): 4310-4322. [18] 唐凯. 棉花磷脂酶D基因家族的分子特征及其GhPLDα1功能分析[D]. 北京: 清华大学, 2017. Tang K.Molecular characterization of phospholipase D gene family and functional analysis of GhPLDα1 in cotton [D]. Beijing: Tsinghua University, 2017. [19] Shi Y H, Zhu S W, Mao X Z, et al.Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J]. Plant Cell, 2006, 18(3): 651-664. [20] Chen C, Liu M, Jiang L, et al.Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumissativus L.)[J]. J Exp Bot, 2014, 65(17): 4943-4958. [21] Pan Y, Bo K, Cheng Z, et al.The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1[J]. BMC Plant Biology, 2015, 15: 302. doi: 10.1186/s12870-015-0693-0. [22] Liu X, Bartholomew E, Cai Y, et al.Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumissativus L)[J]. Front Plant Sci, 2016, 7: 1187. doi: 10.3389/fpls.2016.01187. [23] Zheng K, Tian H, Hu Q, et al.Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation[J]. Sci Rep, 2016, 6: 19254. doi: 10.1038/srep19254. [24] Qin B, Tang D, Huang J, et al.Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane[J]. Mol Plant, 2011, 4(6): 985-995. [25] Ming T, Bartholomew B.Theaceae[J]. Flora China, 2007, 12: 366-478. [26] 陈亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论[J]. 茶叶科学, 2000, 20(2): 89-94. Chen L, Yu F L, Tong Q Q.Discussion on the classification and evolution of tea plants[J]. Journal of Tea Science, 2000, 20(2): 89-94. [27] Li P, Xu Y, Zhang Y, et al.Metabolite profiling and transcriptome analysis revealed the chemical contributions of tea trichomes to tea flavors and tea plant defenses[J]. J Agric Food Chem, 2020, 68(41): 11389-11401. [28] Zhu M, Li N, Zhao M, et al.Metabolomic profiling delineate taste qualities of tea leaf pubescence[J]. Food Res Int, 2017, 94: 36-44. [29] Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. PNAS, 2018, 115(18): E4151-E4158. [30] Gilbert N.The science of tea's mood-altering magic[J]. Nature, 2019, 566(7742): S8-S9. [31] Cao H, Li J, Ye Y, et al.Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (Camellia sinensis)[J]. Biomolecules, 2020, 10(2): 311. doi: 10.3390/biom10020311. [32] Barman T, Baruah U, Saikia J.Seasonal changes in metabolic activities of drought tolerant and susceptible clones of tea (Camellia sinensis L.)[J]. Journal of Plantation Crops, 2008, 36(3): 259-264. [33] Konrad W, Burkhardt J, Ebner M, et al.Leaf pubescence as a possibility to increase water use efficiency by promoting condensation[J]. Ecohydrology, 2015, 8(3): 480-492. [34] Das S, Zaman A, Borchetia S, et al.Genetic relationship in tea germplasms with drought contrasting traits[J]. Plant Breeding and Biotechnology, 2016, 4(4): 484-494. [35] 杨丽丽, 郑高云, 梁丽云, 等. 茶树抗病虫机制的研究进展[J]. 福建茶叶, 2008(2): 8-11. Yang L L, Zheng G Y, Liang L Y, et al.Research progress on resistance mechanism to disease and insect in tea plant[J]. Tea in Fujian, 2008(2): 8-11. [36] Dutta M.Morphological resistance of certain tea clones to red spider mite (Oligonychus coffeae) in tea[J]. Journal of Entomology and Zoology Studies, 2015, 4(3): 454-457. [37] Bandyopadhyay T, Gohain B, Bharalee R, et al.Molecular landscape of helopeltis theivora induced transcriptome and defense gene expression in tea[J]. Plant molecular biology reporter, 2015, 33(4): 1042-1057. [38] Yue C, Cao H, Chen D, et al.Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots[J]. J Plant Physiol, 2018, 229: 41-52. [39] Sun B, Zhu Z, Liu R, et al.TRANSPARENT TESTA GLABRA1 (TTG1) regulates leaf trichome density in tea Camellia sinensis[J]. Nordic Journal of Botany, 2020, 38(1): 1-10. [40] Liu R, Wang Y, Tang S, et al.Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation[J]. Sci Rep, 2021, 11(1): 10764. doi: 10.1038/s41598-021-90205-7. [41] Livak K, Schmittgen T.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-42-3-347/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. [42] Rerie W, Feldmann K, Marks M.The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis[J]. Genes Dev, 1994, 8(12): 1388-1399. [43] Luo D, Oppenheimer D.Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci[J]. Development, 1999, 126(24): 5547-5557. [44] Payne C, Zhang F, Lloyd A.GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics, 2000, 156(3): 1349-1362. [45] Zhang F, Gonzalez A, Zhao M, et al.A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development, 2003, 130(20): 4859-4869. [46] Zhao M, Morohashi K, Hatlestad G, et al.The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11): 1991-1999. [47] Mondal T, Bhattacharya A, Laxmikumaran M, et al.Recent advances of tea (Camellia sinensis) biotechnology[J]. Plant Cell, Tissue and Organ Culture, 2004, 76(3): 195-254. [48] Szymanski D, Jilk R, Pollock S, et al.Control of GL2 expression in Arabidopsis leaves and trichomes[J]. Development, 1998, 125(7): 1161-1171. [49] Boeglin M, Fuglsang A, Luu D, et al.Reduced expression of AtNUP62 nucleoporin gene affects auxin response in Arabidopsis[J]. BMC Plant Biol. 2016, 16: 2. doi: 10.1186/s12870-015-0695-y. [50] 张晨光. 苹果核孔蛋白MdNup54/62调控开花和高温胁迫响应功能研究[D]. 杨凌: 西北农林科技大学, 2021. Zhang C G.Study on the function of apple nuclear pore protein MDNUP54/62 in regulation of flowering and heat stress response [D]. Yangling: Northwest A&F University, 2021. |