[1] Kogan M.Integrated pest management: historical perspectives and contemporary developments[J]. Annual Review of Entomology, 1998, 43(1): 243-270. [2] 吴孔明, 陆宴辉, 王振营. 我国农业害虫综合防治研究现状与展望[J]. 昆虫知识, 2009, 46(6): 831-836. Wu K M, Lu Y H, Wang Z Y.Advance in integrated pest management of crops in China[J]. Chinese Bulletin of Entomology, 2009, 46(6): 831-836. [3] 中国茶叶学会标准化工作委员会. 茶树主要害虫绿色防控技术规程: T/CTSS 37—2021 [S/OL]. [2021-12-20]. http://down.foodmate.net/standard/yulan.php?itemid=115353. Standardization Committee of China Tea Science Society. Green controlling technical regulations for major pests of tea plant: T/CTSS 37—2021 [S/OL]. [2021-12-20]. http://down.foodmate.net/standard/yulan.php?itemid=115353. [4] Khanna A, Kaur S.Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture[J]. Computers and Electronics in Agriculture, 2019, 157: 218-231. [5] Bian L, Sun X L, Luo Z X, et al.Design and selection of trap color for capture of the tea leafhopper, Empoascavitis, by orthogonal optimization[J]. Entomologia Experimentalis et Applicata, 2014, 151(3): 247-258. [6] Bian L, Cai X M, Luo Z X, et al.Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves[J]. Journal of Economic Entomology, 2018, 111(2): 629-636. [7] 封洪强, 姚青. 农业害虫自动识别与监测技术[J]. 植物保护, 2018, 44(5): 127-133. Feng H Q, Yao Q.Automatic identification and monitoring technology of agricultural pests[J]. Plant Protection, 2018, 44(5): 127-133. [8] 姚青, 吴叔珍, 蒯乃阳, 等. 基于改进CornerNet的水稻灯诱飞虱自动检测方法构建与验证[J]. 农业工程学报, 2021, 37(7): 183-189. Yao Q, Wu S Z, Kuai N Y, et al.Automatic detection of rice planthoppers through light-trap insect images using improved Corner Net[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 183-189. [9] 王茂林, 荣二花, 张利军, 等. 基于图像处理的蓟马计数方法研究[J]. 山西农业科学, 2020, 48(5): 812-816. Wang M L, Rong E H, Zhang L J, et al, Study on counting Thripidae thysanoptera based on image processing[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(5): 812-816. [10] 李正飞. 基于小波变换的图像增强技术研究[J]. 机械工程与自动化, 2009(2): 15-17. Li Z F.Image enhancement method based on wavelet transform[J]. Mechanical Engineering & Automation, 2009(2): 15-17. [11] 张江勇. 基于深度学习的动车关键部位故障图像检测[D]. 成都: 电子科技大学, 2019. Zhang J Y.Fault detection of emus based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2019. [12] 彭宜. 基于残差网络和随机森林的音频识别方法研究[D]. 武汉: 武汉科技大学, 2019. Peng Y.Research on audio recognition method based on residual network and random forest [D]. Wuhan: Wuhan University of Science and Technology, 2019. [13] Girshick R.Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: 2015. [14] Ren S Q, He K M, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [15] Liu W, Anguelov D, Erhan D, et al.SSD: single shot multibox detector[M]//Leibe B, Matas J, Sebe N, et al. Lecture notes in computer science. Cham: Springer, 2016: 21-37. [16] Redmon J, Farhadi A.YOLOv3: an incremental improvement[J]. Eprint ArXiv, 2018: 1804.02767. doi: 10.48550/arXiv.1804.02767. [17] Huang J, Zhang H, Wang L, et al.Improved YOLOv3 Model for miniature camera detection[J]. Optics and Laser Technology, 2021, 142. doi: 10.1016/j.optlastec.2021.107133. [18] Bodla N, Singh B, Chellappa R, et al.Soft-NMS-improving object detection with one line of code[J]. Eprint ArXiv, 2017: 1704.04503. doi: 10.48550/arXiv.1704.04503. [19] Redmon J, Farhadi A.YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: 2017. [20] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究[J]. 茶叶科学, 2014, 34(3): 248-252. Bian L, Sun X L, Chen Z M.Studies on daily flight activity and adult flight capacity of Empoasca vitis Göthe[J]. Journal of Tea Science, 2014, 34(3): 248-252. [21] Kim K N, Huang Q Y, Lei C L.Advances in insect phototaxis and application to pest management: a review[J]. Pest Management Science, 2019, 75(12): 3135-3143. [22] Shimoda M, Honda K.Insect reactions to light and its applications to pest management[J]. Applied Entomology and Zoology, 2013, 48(4): 413-421. [23] Rodriguez-Saona C R, Byers J A, Schiffhauer D. Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs[J]. Crop Protection, 2012, 40: 132-144. [24] 杨智辉. 黄色诱虫板对茶果园主要害益虫的诱杀作用调查[J]. 现代农业科技, 2017(15): 91-93. Yang Z H.Investigation on the trapping and killing effect of yellow insect traps on the main harmful and beneficial insects in tea orchards[J]. Modern Agricultural Science and Technology, 2017(15): 91-93. [25] 吴孔明. 中国农作物病虫害防控科技的发展方向[J]. 农学学报, 2018, 8(1): 35-38. Wu K M.Development direction of crop pest control science and technology in China[J]. Journal of Agriculture, 2018, 8(1): 35-38. [26] 陈宗懋, 蔡晓明, 周利, 等. 中国茶园有害生物防控40年[J]. 中国茶叶, 2020, 42(1): 1-8. Chen Z M, Cai X M, Zhou L, et al.Developments on tea plant pest control in past 40 years in China[J]. China Tea, 2020, 42(1): 1-8. |