茶叶科学 ›› 2022, Vol. 42 ›› Issue (4): 463-476.doi: 10.13305/j.cnki.jts.2022.04.005
王玉源1, 刘任坚1, 刘少群1, 舒灿伟2, 孙彬妹1, 郑鹏1,*
收稿日期:
2021-12-27
修回日期:
2022-01-19
出版日期:
2022-08-15
发布日期:
2022-08-23
通讯作者:
*zhengp@scau.edu.cn
作者简介:
王玉源,女,硕士研究生,主要从事茶树遗传育种与分子生物学,wangyy@stu.scau.edu.cn。
基金资助:
WANG Yuyuan1, LIU Renjian1, LIU Shaoqun1, SHU Canwei2, SUN Binmei1, ZHENG Peng1,*
Received:
2021-12-27
Revised:
2022-01-19
Online:
2022-08-15
Published:
2022-08-23
摘要: 儿茶素是茶树中特色的次生代谢产物之一,是影响茶叶的品质与风味的主要组分,具有抗氧化、抗病毒、降脂减肥等药理功效。通过系统发育进化树分析、基因表达模式分析和分子生物学试验对茶树儿茶素生物合成相关调控因子CsTT2的功能进行初步鉴定。结果显示,CsTT2是R2R3-MYB转录因子,与拟南芥中调控次生代谢产物的MYB转录因子同在一个分支。在茶树品种顶芽组织中总儿茶素含量较高,CsTT2和儿茶素生物合成相关基因的表达水平也较高。亚细胞定位、酵母试验和双荧光素酶报告系统试验结果表明,CsTT2定位在细胞核中,其编码的蛋白是具有转录激活能力的调控因子,可以结合儿茶素生物合成关键基因ANR的启动子激活其表达。
中图分类号:
王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. doi: 10.13305/j.cnki.jts.2022.04.005.
WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants[J]. Journal of Tea Science, 2022, 42(4): 463-476. doi: 10.13305/j.cnki.jts.2022.04.005.
[1] Ming T, Bartholomew B.Theaceae[J]. Flora China, 2007, 12: 366-478. [2] Zhao M, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytol, 2020, 226(2): 362-372. [3] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Biochemistry of tea: the third edition [M]. 3rd ed. Beijing: China Agriculture press, 2003. [4] Zhao M, Yu Y, Sun L, et al.GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein[J]. Nature Communications, 2021, 12(1): 2114.doi: 10.1038/s41467-021-22297-8. [5] Xiong L G, Chen Y J, Tong J W, et al.Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in [6] Yuan H, Li Y, Ling F, et al.The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats[J]. Aging cell, 2020, 19(9): e13199. doi: 10.1111/acel.13199. [7] Lwxa B, Shang C, Tsza B, et al.Green tea derivative epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both [8] Zhang Z, Zhang X, Bi K, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science & Technology, 2021, 114: 11-24. [9] Zhao J, Blayney A, Liu X, et al.EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction[J]. Nature Communications, 2021, 12(1): 986. doi: 10.1038/s41467-021-21258-5. [10] Bernier L P, York E M, Kamyabi A, et al.Microglial metabolic flexibility supports immune surveillance of the brain parenchyma[J]. Nat Commun, 2020, 11(1): 1559. doi: 10.1038/s41467-020-15267-z. [11] Liu Z S, Cai H, Xue W, et al.G3BP1 promotes DNA binding and activation of cGAS[J]. Nat Immunol, 2019, 20(1): 18-28. [12] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-181. [13] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908. Xia T, Gao L P.Research progress on biosynthesis pathway and regulation of flavonoids and catechins[J]. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. [14] Weisshaar B, Jenkins G I.Phenylpropanoid biosynthesis and its regulation[J]. Current Opinion in Plant Biology, 1998, 1(3): 251-257. [15] Furukawa T, Eshima A, Koiya M, et al.Coordinate expression of genes involved in catechin biosynthesis in [16] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320. Xia T, Gao L P, Liu Y J, et al.Advances in biosynthesis and hydrolysis of catechins from tea tree[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320. [17] 宛晓春. 茶树次生代谢[M]. 北京: 科学出版社, 2015. Wan X C.Secondary metabolism of tea plant [M]. Beijing: Science Press, 2015. [18] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103. Lu J L, Lin C, Luo Y Y, et al.Advances in cloning of important functional genes from [19] Stafford H A.Flavonoid metabolism pathway to proanthocyanindins (condensed tannins), flavan-3-ols, and unsubstituted flavans [M]. New York: CRC Press, 1990. [20] Stafford H A, Lester H H.The conversion of ( [21] Punyasiri P, Abeysinghe I, Kumar V, et al.Flavonoid biosynthesis in the tea plant [22] Niemetz R, Gross G G.Enzymology of gallotannin and ellagitannin biosynthesis[J]. Phytochemistry, 2005, 66(17): 2001-2011. [23] Gross G G.From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds[J]. Phytochemistry, 2008, 69(18): 3018-3031. [24] Liu Y, Gao L, Liu L, et al.Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant ( [25] Zhong K, Zhao S Y, Jönsson L J, et al.Enzymatic conversion of epigallocatechin gallate to epigallocatechin with an inducible hydrolase from [26] Wei C, Hua Y, Wang S, et al.Draft genome sequence of [27] Luo Y, Yu S, Li J, et al.Molecular characterization of WRKY transcription factors that act as negative regulators of O-Methylated catechin biosynthesis in tea plants ( [28] Wang P, Zhang L, Jiang X, et al.Evolutionary and functional characterization of leucoanthocyanidin reductases from [29] 牛义岭, 姜秀明. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059. Niu Y L, Jiang X M.Research progress of plant transcription factor MYB gene family[J]. Molecular Plant Breeding, 2016, 14(8): 2050-2059. [30] Martin C, Paz-Ares J.MYB transcription factors in plants[J]. Trends in Genetics, 1997, 13(2): 67-73. [31] Verdonk J C, Haring M A, Tunen A J, et al.ODORANT1 regulates fragrance biosynthesis in [32] Bomal C, Bedon F, Caron S, et al.Involvement of [33] Schaart J G, Dubos C, Romero De La Fuente I, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry[J]. The New Phytologist, 2013, 197(2): 454-467. [34] An X H, Tian Y, Chen K Q, et al.MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples[J]. Plant Cell Physiol, 2015, 56(4): 650-662. [35] Tian J, Zhang J, Han Z Y, et al.McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in [36] James A M, Ma D, Mellway R, et al.Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure[J]. Plant Physiology, 2017, 174(1): 154-171. [37] Wang N, Qu C, Jiang S, et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J]. The Plant J, 2018, 96(1): 39-55. [38] Xu W, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends in Plant Science, 2015, 20(3): 176-185. [39] Terrier N, Torregrosa L, Ageorges A, et al.Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiol, 2009, 149(2): 1028-1041. [40] Gesell A, Yoshida K, Tran L T, et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J]. Planta, 2014, 240(3): 497-511. [41] Mellway R D, Tran L T, Prouse M B et al. The wound-, pathogen-, and ultraviolet B-responsive [42] Stracke R, Werber M, Weisshaar B.The R2R3-MYB gene family in [43] Liu R, Wang Y, Tang S, et al.Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation[J]. Sci Rep, 2021, 11(1): 10764. doi: 10.21203/rs.3.rs-148784/v1. [44] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method[J]. Methods, 2001, 25(4): 402-408. [45] Chen C, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202. [46] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in [47] Stracke R, Ishihara H, Huep G, et al.Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the [48] Gonzalez A, Zhao M, Leavitt J M, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in [49] Lepiniec L, Debeaujon I, Routaboul J M, et al.Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol, 2006, 57: 405-430. [50] Zhong R, Lee C, Zhou J, et al.A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in [51] Zhou J, Lee C, Zhong R, et al.MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in [52] Sun B, Zhu Z, Cao P, et al.Purple foliage coloration in tea ( [53] Wang X C, Wu J, Guan M L, et al. [54] Ma D, Constabel C P.MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends Plant Sci, 2019, 24(3): 275-289. [55] Agarwal M, Hao Y, Kapoor A, et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645. [56] Kang Y H, Kirik V, Hulskamp M, et al.The [57] Jiang X, Huang K, Zheng G, et al.CsMYB5a and CsMYB5e from [58] Wang P, Ma G, Zhang L, et al.A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant ( |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[3] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[4] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[5] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[6] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[7] | 王涛, 王艺清, 漆思雨, 周喆, 陈志丹, 孙威江. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. |
[8] | 刘任坚, 王玉源, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学, 2022, 42(3): 347-357. |
[9] | 欧阳珂, 张成, 廖雪利, 坤吉瑞, 童华荣. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. |
[10] | 刘富浩, 范延艮, 王域, 孟凡月, 张丽霞. 茶树黄金芽CsHIPP26.1蛋白螯合离子的筛选与鉴定[J]. 茶叶科学, 2022, 42(2): 179-186. |
[11] | 杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. |
[12] | 疏再发, 郑生宏, 邵静娜, 周慧娟, 吉庆勇, 刘瑜, 何卫中, 王丽鸳. 不同茶树品种(系)对减半施肥的响应研究[J]. 茶叶科学, 2022, 42(2): 277-289. |
[13] | 陈潇敏, 赵峰, 王淑燕, 邵淑贤, 吴文晞, 林钦, 王鹏杰, 叶乃兴. 福建野生茶树资源嘌呤生物碱构成评价及特异资源筛选[J]. 茶叶科学, 2022, 42(1): 18-28. |
[14] | 刘庆帅, 璩馥榕, 魏梦园, 钟红, 王熠, 陈亮, 金基强. 基于UPLC技术解析金萱×紫娟F1分离群体代谢物的遗传变异[J]. 茶叶科学, 2022, 42(1): 29-40. |
[15] | 朱咏珊, 罗晓欣, 梁浩然, 陈正桐, 刘成, 曹凯, 刘少群, 周而勋, 舒灿伟, 郑鹏. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|