[1] 张浩, 陈勇, 汪巍, 等. 基于主动计算机视觉的茶叶采摘定位技术[J]. 农业机械学报, 2014, 45(9): 61-65. Zhang H, Chen Y, Wang W, et al.Positioning method for tea picking using active computer vision[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(9): 61-65. [2] Chen Y T, Chen S F.Localizing plucking points of tea leaves using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 171: 105298. doi: 10.1016/j.compag.2020.105298. [3] 张金炎, 曹成茂, 李文宝, 等. 基于多特征融合的茶叶鲜叶等级识别的方法研究[J]. 安徽农业大学学报, 2021, 48(3): 480-487. Zhang J Y, Cao C M, Li W B, et al.Study on the method of recognition of fresh leaf grade of tea based on multi-featured fusion[J]. Journal of Anhui Agricultural University, 2021, 48(3): 480-487. [4] Yuwana R S, Fauziah F, Heryana A, et al.Data augmentation using adversarial networks for tea diseases detection[J]. Journal Elektronika dan Telekomunikasi, 2020, 20(1): 29-35. [5] 刘自强, 周铁军, 傅冬, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D, et al.Study on image feature extraction of fresh tea based on color and shape and its application in tea variety recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [6] 毛腾跃, 张雯娟, 帖军. 基于显著性检测和Grabcut算法的茶叶嫩芽图像分割[J]. 中南民族大学学报(自然科学版), 2021, 40(1): 80-88. Mao T Y, Zhang W J, Tie J.Image segmentation of tea buds based on salient object detection and Grabcut[J]. Journal of South-Central Minzu University (Natural Science Edition), 2021, 40(1): 80-88. [7] 姜苗苗, 问美倩, 周宇, 等. 基于颜色因子与图像融合的茶叶嫩芽检测方法[J]. 农业装备与车辆工程, 2020, 58(10): 44-47. Jiang M M, Wen M Q, Zhou Y, et al.Tea bud detection method based on color factor and image fusion[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(10): 44-47. [8] Wang T, Zhang K M, Zhang W, et al.Tea picking point detection and location based on Mask-RCNN[J]. Information Processing in Agriculture, 2021. doi: 10.1016/j.inpa.2021.12.004. [9] Iswanto B H, Alma A .Texture histogram features for tea leaf identification using visible digital camera[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1098(3): 1098-1104. [10] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41. Long Z, Jiang Q, Wang J, et al.Research on method of tea flushes vision recognition and picking point localization[J]. Transducer and Microsystem Technologies, 2022, 41(2): 39-41. [11] 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589. Wu X M, Zhang F G, Lv J T.Research on recognition of tea tender leaf based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589. [12] 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1): 72-77. Wang J.Segmentation algorithm of tea combined with the color and region growing[J]. Journal of Tea Science, 2011, 31(1): 72-77. [13] Zhang L, Zou L, Wu C, et al.Method of famous tea sprout identification and segmentation based on improved watershed algorithm[J]. Computers and Electronics in Agriculture, 2021, 184(1): 106108. doi: 10.1016/j.compag.2021.106108. [14] 王子钰, 赵怡巍, 刘振宇. 基于SSD算法的茶叶嫩芽检测研究[J]. 微处理机, 2020, 41(4): 42-48. Wang Z Y, Zhao Y W, Liu Z Y.Research on tea buds detection based on SSD algorithm[J]. Microprocessors, 2020, 41(4): 42-48. [15] 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 211-216. Sun X X, Mu S M, Xu Y Y, et al.Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 211-216. [16] Yang H, Chen L, Chen M, et al.Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model[J]. IEEE Access, 2019: 180998-181011. [17] Li Y T, He L Y, Jia J M, et al.In-field tea shoot detection and 3D localization using an RGB-D camera[J]. Computers and Electronics in Agriculture, 2021, 185: 106149. doi: 10.1016/j.compag.2021.106149. [18] 吕军, 方梦瑞, 姚青, 等. 基于区域亮度自适应校正的茶叶嫩芽检测模型[J]. 农业工程学报, 2021, 37(22): 278-285. Lyu J, Fang M R, Yao Q, et al.Detection model for tea buds based on region brightness adaptive correction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 278-285. [19] Karunasena G, Priyankara H.Tea bud leaf identification by using machine learning and image processing techniques[J]. International Journal of Scientific & Engineering Research, 2020, 11(8): 624-628. [20] Li X, Pan J, Xie F, et al.Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model[J]. Computers and Electronics in Agriculture, 2021, 191: 106503. [21] Jiang Z, Zhao L, Li S, et al.Real-time object detection method based on improved YOLOv4-tiny[J]. arXiv preprint, 2020, arXiv: 2011.04244. doi: 10.48550/arXiv.2011.04244. [22] Misra D.Mish: A self regularized non-monotonic activation function[J]. arXiv preprint, 2019, arXiv: 1908.08681. doi: 10.48550/arXiv.1908.08681. [23] Glorot X, Bordes A, Bengio Y.Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323. [24] Zheng Z, Wang P, Liu W, et al.Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7): 12993-13000. [25] Lin T Y, Dollar P, Girshick R, et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125. [26] Woo S, Park J, Lee J Y, et al.CBAM: convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19. [27] Guo C, Fan B, Zhang Q, et al.AugFPN: improving multi-scale feature learning for object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 12595-12604. [28] Syazwany N S, Nam J H, Lee S C.MM-BiFPN: multi-modality fusion network with Bi-FPN for MRI brain tumor segmentation[J]. IEEE Access, 2021: 160708-160720. [29] 王金鹏, 高凯, 姜洪喆, 等. 基于改进的轻量化卷积神经网络火龙果检测方法[J]. 农业工程学报, 2020, 36(20): 218-225. Wang J P, Gao K, Jiang H Z, et al.Method for detecting dragon fruit based on improved lightweight convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 218-225. [30] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [31] 林森, 刘美怡, 陶志勇. 采用注意力机制与改进YOLOv5的水下珍品检测[J]. 农业工程学报, 2021, 37(18): 307-314. Lin S, Liu M Y, Tao Z Y.Detection of underwater treasures using attention mechanism and improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 307-314. [32] Redmon J, Farhadi A. YOLOv3: an incremental improvement [J]. arXiv preprint, 2018, arXiv: 1804.02767. doi.org/10.48550/arXiv.1804.02767. [33] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv preprint, 2020, arXiv: 2004.10934. doi: 10.48550/arXiv.2004.10934. [34] Yap M H, Hachiuma R, Alavi A, et al.Deep learning in diabetic foot ulcers detection: a comprehensive evaluation[J]. Computers in Biology and Medicine, 2021, 135: 104596. doi: 10.1016/j.compbiomed.2021.104596. [35] Selvaraju R R, Cogswell M, Das A, et al.Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626. |