[1] 骆耀平. 茶树栽培学[M]. 北京: 中国农业出版社, 2015. Luo Y P.Tea cultivation [M]. Beijing: China Agriculture Press, 2015. [2] 沈宏, 严小龙. 铝对植物的毒害和植物抗铝毒机理及其影响因素[J]. 土壤通报, 2001(6): 281-285. Shen H, Yan X L.Types of aluminum toxicity and plants resistance to aluminum toxicity[J]. Chinese Journal of Soil Science, 2001(6): 281-285. [3] 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915. Sun T, Liu P, Zheng R W, et al.Forms and accumulation of aluminum in tea plant (Camellia sinensis)[J]. The Crop Journal, 2009, 35(10): 1909-1915. [4] 王金林, 闻禄, 陈平, 等. 长期不同施肥对茶园土壤pH、茶叶产量可持续性和品质的影响[J]. 中国农学通报,2021, 37(8): 84-88. Wang J L, Wen L, Chen P, et al.Effects of long-term fertilization on soil pH, yield sustainability and quality of tea[J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 84-88. [5] 傅绍光, 刘鹏, 罗虹, 等. 铝和氟对茶树根际土壤微生物交互作用的研究[J]. 浙江师范大学学报(自然科学版), 2009, 32(3): 332-337. Fu S G, Liu P, Luo H, et al.Interaction of aluminum and fluorine stress on soil microbes of tea rhizosphere[J]. Journal of Zhejiang Normal University (Natural Sciences), 2009, 32(3): 332-337. [6] Watanabe T, Osaki M.Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review[J]. Communications in Soil Science and Plant Analysis, 2002, 33(7/8): 1247-1260. [7] Kochian L V, Piñeros M A, Liu J, et al.Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66: 571-598. [8] 黄凯, 张红宇, 张菡倩, 等. 植物应答铝毒的分子机制研究进展[J]. 生物技术通报, 2021, 37(3): 125-135. Huang K, Zhang H Y, Zhang H Q, et al.Research progress on the molecular mechanism of plants response to aluminum toxicity[J]. Biotechnology Bulletin, 2021, 37(3): 125-135. [9] Tahara K, Hashida K, Otsuka Y, et al.Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis[J]. Plant Physiology, 2014, 164(2): 683-693. [10] Kidd P S, Llugany M, Poschenrieder C, et al.The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( Zea mays L.)[J]. Journal of Experimental Botany, 2001, 52(359): 1339-1352. [11] 赵希俊, 宋萍, 封磊, 等. 一株具有耐铝促生作用的茶树内生细菌的分离鉴定[J]. 江西农业大学学报, 2014, 36(2): 407-412. Zhao X J, Song P, Feng L, et al.Isolation and identification of a growth-promoting and aluminum-resistant endophytic bacterium from tea tree[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 407-412. [12] Sun L L, Zhang M S, Liu X M, et al.Aluminium is essential for root growth and development of tea plants(Camellia sinensis)[J]. Journal of Integrative Plant Biology, 2020(7): 984-997. [13] 兰欣悦. 土壤酸化对于茶树利用铝的影响[J]. 广东蚕业, 2019, 53(5): 30-31, 33. Lan X Y.The effect of soil acidification on the utilization of aluminum in tea trees[J]. Guangdong Sericulture, 2019, 53(5): 30-31, 33. [14] 黄丹娟, 毛迎新, 陈勋, 等. 茶树富集铝的特点及耐铝机制研究进展[J]. 茶叶科学, 2018, 38(2): 125-132. Huang D J, Mao Y X, Chen X, et al.Advances in aluminum accumulation and tolerance mechanisms in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2018, 38(2): 125-132. [15] Ding Z J, Shi Y Z, Li G X, et al.Tease out the future: how tea research might enable crop breeding for acid soil tolerance[J]. Plant Communications, 2021, 2(3): 100182. doi: 10.1016/j.xplc.2021.100182. [16] 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 356-362. Wang M, Ning Q Y, Shi Y Z.Study on physiological response of tea plant (Camellia sinensis) seedlings to different aluminum concentrations[J]. Journal of Tea Science, 2017, 37(4): 356-362. [17] 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江农业大学学报, 1995, 21(5): 461-464. Pan G S, Shigeki K.Effect of nitrogen on growth of tea under the supply of aluminium[J]. Journal of Zhejiang Agricultural University, 1995, 21(5): 461-464. [18] Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis)[J]. Phytochemistry, 2008, 69(1): 147-153. [19] Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017, 119: 265-274. [20] Safari M, Ghanati F, Safarnejad M R, et al.The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum[J]. Planta, 2018, 247(2): 381-392. [21] Fu Z H, Jiang X L, Li W W, et al.Proanthocyanidin-aluminum complexes improve aluminum resistance and detoxification of Camellia sinensis[J]. Journal of Agricultural and Food Chemistry, 2020, 68(30): 7861-7869. [22] 何玲敏, 叶建仁. 植物内生细菌及其生防作用研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 153-159. He L M, Ye J R.Endophytic bacteria: research advances and biocontrol applications[J]. Journal of Nanjing Forestry University (Natural Sciences), 2014, 38(6): 153-159. [23] 严婉荣, 赵廷昌, 肖彤斌, 等. 生防细菌在植物病害防治中的应用[J]. 基因组学与应用生物学, 2013, 32(4): 533-539. Yan W R, Zhao T C, Xiao T B, et al.Applications of biocontrol bacteria in plant disease control[J]. Genomics and Applied Biology, 2013, 32(4): 533-539. [24] Shan W N, Zhou Y, Liu H H, et al.Endophytic actinomycetes from tea plants (Camellia sinensis): isolation, abundance, antimicrobial, and plant-growth-promoting activities[J]. BioMed Research International, 2018, 2018: 1-12. doi: 10.1155/2018/1470305. [25] 王红珠, 吴华芬, 吕高卿, 等. 耐铅植物内生菌的筛选及其促生机制研究[J]. 浙江农业科学, 2021, 62(4): 823-827. Wang H Z, Wu H F, Lü G Q, et al.Screening and promoting mechanism study of Pb-resistant endophytes[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(4): 823-827. [26] 张沁怡, 杨美雪, 张婷, 等. 油菜根内生菌分离、鉴定及其植物益生作用筛选[J]. 福建农业科技, 2021, 52(11): 33-43. Zhang Q Y, Yang M X, Zhang T, et al.Isolation and identification of endophytic bacteria from the roots of brassica napus and the screening for the probiotic effects of plants[J]. Fujian Agricultural Science and Technology, 2021, 52(11): 33-43. [27] 狄义宁, 谢林艳, 谷书杰, 等. 甘蔗及甘蔗近缘属内生菌的筛选、鉴定与功能研究[J]. 中国农业大学学报, 2021, 26(11): 70-83. Di Y N, Xie L Y, Gu S J, et al.Screening, identification and biological function study of endophytic bacteria isolated[J]. Journal of China Agricultural University, 2021, 26(11): 70-83. [28] Lucero C T, Lorda G S, Anzuay M S, et al.Peanut endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants[J]. Current Microbiology, 2021, 78(5): 1961-1972. [29] 罗继鹏, 陶琦, 吴可人, 等. 超积累植物内生微生物群落组成特征及其功能研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 515-529. Luo J P, Tao Q, Wu K R, et al.Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(5): 515-529. [30] 刘雪停, 林晓民, 夏彦飞. 牡丹内生细菌生物防治技术研究进展[J]. 河南农业, 2021(12): 55-56. Liu X T, Lin X M, Xia Y F.Research progress on biological control technology of endophytic bacteria in Peonia Suffruticosa[J]. Agriculture of Henan, 2021(12): 55-56. [31] 常恺莉, 张琳, 周红英, 等. 药用植物内生菌资源在农业中的应用与研究进展[J]. 山东农业科学, 2021, 53(7): 135-141. Chang K L, Zhang L, Zhou H Y, et al.Application and research progress of endophyte resources of medicinal plants in agriculture[J]. Shandong Agricultural Sciences, 2021, 53(7): 135-141. [32] 于晓燕, 宋宇辰, 魏光普, 等. 镧、铈污染土壤中植物-菌根协同修复效应[J]. 稀土, 2021, 42(4): 91-100. Yu X Y, Song Y C, Wei G P, et al.Phytomycorrhizal synergistic remediation of soil polluted by lanthanum and cerium[J]. Chinese Rare Earths, 2021, 42(4): 91-100. [33] 张凯璇, 唐艳葵, 秦芷怡, 等. 植物内生菌应用于有害金属污染环境修复研究进展[J]. 江苏农业科学, 2018, 46(6): 17-22. Zhang K X, Tang Y K, Qin Z Y, et al.Research progress on application of plant endophytes in remediation of environmental pollution caused by harmful metals[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 17-22. [34] 刘丽辉, 蒋慧敏, 区宇程, 等. 南方野生稻内生细菌的分离鉴定及促生作用[J]. 应用与环境生物学报, 2020, 26(5): 1051-1058. Liu L H, Jiang H M, Qu Y C, et al.Identification and growth promotion of endophytic bacteria isolated from Oryza meridionalis[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1051-1058. [35] 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5. Wang L Q, Yan X M, Guo X S, et al.Diversity of endophytic microorganisms Zijuan and Yunkang 10 of Camellia sinensis[J]. Journal of Anhui Agricultural University, 2016, 43(1): 1-5. [36] 冀玉良, 李丹, 罗嘉凡. ACC脱氨酶活性菌的分离及其对桔梗的促生作用[J]. 商洛学院学报, 2021, 35(2): 33-40. Ji Y L, Li D, Luo J F.Isolation of ACC deaminase active bacteria and its growth-promoting effect on platycodon grandiflorum[J]. Journal of Shangluo University, 2021, 35(2): 33-40. [37] 李玲, 沈琼雯, 庞祥宇, 等. 贵州喀斯特地区具ACC脱氨酶活性细菌的分离和鉴定[J]. 基因组学与应用生物学, 2018, 37(4): 1495-1505. Li L, Shen Q W, Pang X Y, et al.Isolation and identification of bacteria with 1-aminocyclopropane-1-carboxylic acid deaminase activity in karst soil from Guizhou[J]. Genomics and Applied Biology, 2018, 37(4): 1495-1505. [38] 张莹, 张文莉, 陈小贝, 等. 细菌产铁载体的结构、功能及其研究进展[J]. 中国卫生检验杂志, 2012, 22(9): 2249-2251. Zhang Y, Zhang W L, Chen X B, et al.Structure, function and research progress of bacterial iron-producing carrier[J]. Chinese Journal of Health Laboratory Technology, 2012, 22(9): 2249-2251. [39] 董蒙蒙, 袁博, 徐玲霞, 等. 南方红豆杉产IAA内生芽胞杆菌的分离、鉴定及产脂肽类化合物研究[J]. 亚热带植物科学, 2020, 49(6): 420-426. Dong M M, Yuan B, Xu L X, et al.Isolation and identification of endophytic Bacillus sp. producing IAA from taxus wallichiana var. mairei and its lipopeptide production[J]. Subtropical Plant Science, 2020, 49(6): 420-426. [40] 孙艳敏, 韩锦峰, 陈小丽, 等. 减施化学农药防治植物病害措施的研究进展[J]. 贵州农业科学, 2021, 49(5): 58-66. Sun Y M, Han J F,Chen X L, et al.Advances in measures of reduction of chemical pesticides to control plant diseases[J]. Guizhou Agricultural Sciences, 2021, 49(5): 58-66. [41] 游雨晴. 生物防治在农业病虫害防治中的应用[J]. 新农业, 2021(7): 13-14. You Y Q.Application of biological control in agricultural pest control[J]. Modern Agriculture, 2021(7): 13-14. |