[1] He H, Bian G, Herbst-Gervasoni C J, et al. Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases[J]. Nature Communications, 2020, 11(1): 3958. doi: 10.1038/s41467-020-17642-2. [2] Bian G, Deng Z, Liu T.Strategies for terpenoid overproduction and new terpenoid discovery[J]. Curr Opin Biotech, 2017, 48: 234-241. [3] Aharoni A, Giri A P, Deuerlein S, et al.Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. Plant Cell, 2003, 15(12): 2866-2884. [4] Dudareva N, Negre F, Nagegowda D A, et al.Plant volatiles: recent advances and future perspectives[J]. Critical Reviews in Plant Sciences, 2006, 25(5): 417-440. [5] Zhao M Y, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytologist, 2020, 226(2): 362-3720. [6] Chen F, Tholl D, Bohlmann J, et al.The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. The Plant Journal, 2011, 66(1): 212-229. [7] Gutensohn M, Orlova I, Nguyen T T, et al.Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits[J]. The Plant Journal, 2013, 75(3): 351-363. [8] Dong L, Miettinen K, Goedbloed M, et al.Characterization of two geraniol synthases from Valeriana Officinalis and Lippia Dulcis: similar activity but difference in subcellular localization[J]. Metabolic Engineering, 2013, 20: 198-211. [9] Iijima Y, Gang D R, Fridman E, et al.Characterization of geraniol synthase from the peltate glands of sweet Basil[J]. Plant Physiol, 2004, 134(1): 370-379. [10] Davidovich-Rikanati R, Sitrit Y, Tadmor Y, et al.Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway[J]. Natbiotechnol, 2007, 25(8): 899-901. [11] Magnard J L, Roccia A, Caissard J C, et al.Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83. [12] Zhou H C, Wang S J, Xie H F, et al.Cytosolic Nudix Hydrolase 1 is involved in geranyl β-primeveroside production in tea[J]. Front Plant Sci, 2022, 13: 833682. doi: 10.3389/fpls.2022.833682. [13] Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci, 2018, 115: E4151-E4158. [14] Xia E, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [15] Chen J D, Zheng C, Ma J Q, et al.The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant[J]. Hortic Res, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2. [16] Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020 -18228-8. [17] Zhang Q J, Li W, Li K, et al.The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution[J]. Molecular Plant, 2020, 13(7): 935-938. [18] Zhang W Y, Zhang H, Qiu Y, et al.Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communications, 2020, 11: 3719. doi: 10.1038/s41467-020-17498-6. [19] Liu J, Guan Z Y, Liu H B, et al.Structural insights into the substrate recognition mechanism of Arabidopsis GPP-bound NUDX1 for noncanonical monoterpene biosynthesis[J]. Molecular Plant, 2018, 11(1): 218-221. [20] Kraszewska E.The plant Nudix hydrolase family[J]. Acta Biochim Pol, 2008, 55(4): 663-671. [21] McLennan A G. The Nudix hydrolase superfamily[J]. Cell Mol Life Sci, 2006, 63(2): 123-143. [22] Wilson A E, Tian L.Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism[J]. The Plant Journal, 2019, 100(6): 1273-1288. [23] Caputi L, Malnoy M, Goremykin V, et al.A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land[J]. The Plant Journal, 2012, 69(6): 1030-1042. [24] Liu G F, Liu J J, He Z R, et al.Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis[J]. Plant Cell Environ, 2018, 41(1): 176-186. [25] Wang M Q, Ma W J, Shi J, et al.Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International, 2020, 130: 108908. doi: 10.1016/j.foodres.2019.108908. [26] Wang H F, You X Q.Free and glycosidically bound monoterpene alcohols in Qimen black tea[J]. Food Chemistry, 1996, 56(4): 395-398. [27] Zhu J, Chen F, Wang L, et al.Comparison of aroma-active volatiles in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS[J]. Journal of Agricultural and Food Chemistry, 2015, 63(34): 7499-510. [28] Yuan J S, Köllner T G, Wiggins G, et al.Molecular and genomic basis of volatile-mediated indirect defense against insects in rice[J]. The Plant Journal, 2008, 55(3): 491-503. [29] Takeo T.Variation in amounts of linalool and geraniol produced in tea shoots by mechanical injury[J]. Phytochemistry, 1981, 20(9): 2149-2151. |