茶叶科学 ›› 2022, Vol. 42 ›› Issue (5): 672-688.doi: 10.13305/j.cnki.jts.2022.05.008
王峰1,2,3, 陈玉真2, 吴志丹2, 尤志明2, 余文权4, 俞晓敏3, 杨贞标3,5,*
收稿日期:
2022-02-28
修回日期:
2022-05-06
出版日期:
2022-10-15
发布日期:
2022-10-28
通讯作者:
* yang@ucr.edu
作者简介:
王峰,男,副研究员,主要研究方向为茶树栽培与环境生态,82458lin@163.com。
基金资助:
WANG Feng1,2,3, CHEN Yuzhen2, WU Zhidan2, YOU Zhiming2, YU Wenquan4, YU Xiaomin3, YANG Zhenbiao3,5,*
Received:
2022-02-28
Revised:
2022-05-06
Online:
2022-10-15
Published:
2022-10-28
摘要: 以两种不同管理方式(常规和有机种植)和3个坡位(上、中、下坡位)表层土壤(0~20 cm)为研究对象,通过野外调查、高通量测序、功能预测结合分子生态网络分析,研究管理方式和坡位对土壤真菌群落结构、功能特征和共发生网络的影响。研究结果表明,管理方式和坡位对土壤真菌α多样性指数影响不显著,且不存在交互作用。在门水平,管理方式及不同坡位样地的优势真菌均为子囊菌门、担子菌门和被孢霉门,管理方式没有改变土壤优势真菌的种类,但影响其相对丰度。主坐标分析(PCoA)显示,管理模式导致茶园土壤真菌群落组成发生明显改变,常规管理方式下不同坡位之间的土壤真菌群落结构有显著差异(P<0.05),而有机种植下不同坡位之间无显著差异(P>0.05)。组间群落差异分析(LEfSe)表明,37个差异物种对管理方式非常敏感,不同管理方式富集了不同的真菌类群。共现性网络分析发现,有机茶园土壤真菌网络节点数、平均聚类系数、边数、网络中心性和网络密度均明显高于常规茶园,说明其生态网络结构更为复杂。不同处理茶园土壤真菌以腐生营养型为主(66.67%~70.18%),有机茶园土壤中内生-垃圾腐生-土壤腐生-未定义腐生真菌、木材腐生真菌和动物病原-内生-植物病原-未定义腐生真菌的丰度显著高于常规茶园,而未定义腐生真菌、植物病原真菌和动物病原-植物病原-未定义腐生真菌的丰度则显著降低。相关性分析和冗余分析结果表明,土壤全磷、有效磷、全钾、有机质、阳离子交换量和pH值是影响茶园土壤真菌群落结构的主要因子。综上所述,有机管理方式对茶园土壤真菌群落结构产生显著影响,提高了土壤有益真菌的数量(被孢霉属),增强了土壤真菌网络稳定性和抗干扰能力,降低了病原真菌的丰度(如拟盘多毛孢属和假拟盘多毛孢属等),具有良好的生态环境效应。
中图分类号:
王峰, 陈玉真, 吴志丹, 尤志明, 余文权, 俞晓敏, 杨贞标. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. doi: 10.13305/j.cnki.jts.2022.05.008.
WANG Feng, CHEN Yuzhen, WU Zhidan, YOU Zhiming, YU Wenquan, YU Xiaomin, YANG Zhenbiao. Effects of Organic Management Mode on Soil Fungal Community Structure and Functions in Tea Gardens[J]. Journal of Tea Science, 2022, 42(5): 672-688. doi: 10.13305/j.cnki.jts.2022.05.008.
[1] 茹玉, 肖庆文, 都静. 全球价值链助推农业产业升级的创新路径研究—基于湄潭县茶产业扶贫项目的案例分析[J]. 农业经济问题, 2019, 472(4): 51-59. Ru Y, Xiao Q W, Du J.Research on innovation path of global value chains (GVCs) promoting the agricultural industry upgrading: experience from the poverty alleviation project of the tea industry in meitan county, guizhou province[J]. Problems of Agricultural Economy, 2019, 472(4): 51-59. [2] Yan P, Shen C, Fan L C, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture Ecosystems Environment, 2018, 254: 20-25. [3] 丁瑞兴, 黄骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J]. 土壤学报, 1991, 28(3): 229-236. Ding R X, Huang X.Biogeochemical cyele of aluminum and fhuorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedologica Sinica, 1991, 28(3): 229-236. [4] Wang S Q, Li T X, Zheng Z C.Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China[J]. Ecological Engineering, 2016, 90: 113-119. [5] Han W Y, Kemmitt S J, Brookes P C .Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J]. Soil Biology Biochemistry, 2007, 39(7): 1468-1478. [6] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea ( [7] 王海斌, 陈晓婷, 王裕华, 等. 不同树龄茶树根际土壤物质对其生长和品质的影响[J]. 热带作物学报, 2019, 40(11): 2149-2159. Wang H B, Chen X T, Wang Y H, et al.Effects of rhizosphere soil chemicals on growth and quality of tea trees at different ages[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2149-2159. [8] 余继忠, 徐家明, 黄海涛, 等. 重修剪、台刈和改植换种三种茶园改造方式的比较[J]. 茶叶科学, 2008, 28(3): 221-227. Yu J Z, Xu J M, Huang H T, et al.Comparison on the different rehabilitation methods of heavy pruning, collar pruning and replanting[J]. Journal of Tea Science, 2008, 28(3): 221-227. [9] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力,酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 26-31. Wang H B, Chen X T, Ding L, et al.Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31. [10] Arafat Y, Wei X Y, Jiang Y H, et al.Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems[J]. International Journal of Molecular Sciences, 2017, 18(8): 1727. doi: 10.3390/ijms18081727. [11] Arafat Y, Din I U, Tayyab M, et al.Soil sickness in aged tea plantation is associated with a shift in microbial communities as a result of plant polyphenol accumulation in the tea gardens[J]. Frontiers in Plant Science, 2020, 11: 601. doi: 10.3389/fpls.2020.00601. [12] 王海斌, 陈晓婷. 连作土壤对铁观音茶树生理特性的影响[J]. 农产品加工(上), 2015(10): 33-35. Wang H B, Chen X T.Effect of Tieguanyin continue cropping soil on tea seeding physiological characteristics[J]. Academic Periodical of Farm Products Processing, 2015(10): 33-35. [13] Yang Y R, Kim J Y, Chung J O, et al.Variations in the composition of tea leaves and soil microbial community[J]. Plant and Soil, 2022, 58: 167-179. [14] Tang S, Zhou J J, Pan W K, et al.Impact of N application rate on tea ( [15] Liu C, Wang S, Yan J, et al.Soil fungal community affected by regional climate played an important role in the decomposition of organic compost[J]. Environmental Research, 2021, 197(315): 111076. doi: 10.1016/j.envres. 2021.111076. [16] Wang Z T, Chen Q, Liu L, et al.Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China[J]. Applied Soil Ecology, 2016, 101: 132-140. [17] Tedersoo L, Bahram M, Põlme S, et al.Global diversity and geography of soil fungi[J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688. [18] Morrison-Whittle P, Lee S A, Goddard M R.Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems[J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313. [19] Tsiafouli M A, Thébault E, Sgardelis S P, et al.Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21: 973-985. [20] Li H X, Cai X X, Gong J Y, et al.Long-term organic farming manipulated rhizospheric microbiome and bacillus antagonism against pepper blight ( 2019.00342. [21] Peltoniemi K, Velmala S, Fritze H, et al.Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil[J]. European Journal of Soil Biology, 2021, 21: 103314. doi: 10.1016/j.ejsobi.2021.103314. [22] Uzman D, Pliester J, Leyer I, et al.Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils[J]. Applied Soil Ecology, 2019, 133: 89-97. [23] Bell L W, Sparling B, Tenuta M, et al.Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland[J]. Agriculture Ecosystems Environment, 2012, 158(3): 156-163. [24] Alegbeleye O O, Sant'Ana A S. Manure-borne pathogens as an important source of water contamination: an update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies[J]. International Journal of Hygiene and Environmental Health, 2020, 227(11): 113524. doi: 10.1016/j.ijheh.2020.113524. [25] Wang W H, Wang H, Feng Y Z, et al.Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River[J]. Scientific Reports, 2016, 6: 35046. doi: 10.1038/srep35046. [26] Wu T, Liu W, Wang D, Zou Y K, et al.Organic management improves soil phosphorus availability and microbial properties in a tea plantation after land conversion from longan ( [27] 何燕, 李廷轩, 王永东. 低山丘陵区不同坡位茶园土壤肥力特征研究[J]. 中国生态农业学报, 2009, 17(4): 661-666. He Y, Li T X, Wang Y D.Soil fertility in tea plantations in different slope positions and elevation regions[J]. Chinese Journal of Eco-Agriculture, 2009, 17(4): 661-666. [28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K.Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Scientech Press, 2000. [29] Nguyen N H, Song Z W, Bates S, et al.Fun guild: an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248. [30] Kazerooni E A, Maharachchikumbura S, Velazhahan R, et al.Fungal diversity in Tomato rhizosphere soil under conventional and desert farming systems[J]. Frontiers in Microbiology, 2017, 8: 1462. doi.org/10.3389/fmicb.2017.01462. [31] Karlsson I, Friberg H, Kolseth A K, et al.Organic farming increases richness of fungal taxa in the wheat phyllosphere[J]. Molecular Ecology, 2017, 26: 3424-3436. [32] Schlatter D C, Schillinger W F, Bary A I, et al.Biosolids and conservation tillage: impacts on soil fungal communities in dryland wheat-fallow cropping systems[J]. Soil Biology Biochemistry, 2017, 115: 556-567. [33] Li Y, Zhang Q P, Cai Y J, et al.Minimum tillage and residue retention increase soil microbial population size and diversity: implications for conservation tillage[J]. The Science of the Total Environment, 2020, 716: 137164. doi.org/10.1016/j.scitotenv.2020.137164. [34] Wang Z, Zhang Q, Staley C, et al.Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability[J]. Biology and Fertility of Soils, 2019, 55: 121-134. [35] 周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征[J]. 应用生态学报, 2018, 29(3): 909-914. Zhou Q, Wang L C, Xing Yi, et al.Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 909-914. [36] Zhang H L, Zheng X Q, Bai N L, et al.Responses of soil bacterial and fungal communities to organic and conventional farming systems in East China[J]. Journal of microbiology and biotechnology, 29(3): 441-453. [37] Geel V M, Verbruggen E, Beenhouwer D M, et al.High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards[J]. Agriculture Ecosystems Environment, 2017, 248: 144-152. [38] 姚雪玲, 傅伯杰, 吕一河. 黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J]. 生态学报, 2012, 32(16) : 4961-4968. Yao X L, Fu B J, Lü Y H.Spatial patterns of soil moisture at transect scale in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2012, 32(16): 4961-4968. [39] 赵炯昌, 卫伟, 段兴武. 模拟降雨下黄土坡面水沙过程对3种灌草植被垂直结构变化的响应[J]. 生态学报, 2021, 41(21): 8602-8611. Zhao J C, Wei W, Duan X W.Response of the runoff and sediment process on loess slope to the vertical structure changes of three shrub and grass vegetations under simulated rainfall[J]. Acta Ecologica Sinica, 2021, 41(21): 8602-8611. [40] Manoeli L, Korthals G W, Mattias D H, et al.Soil microbiome is more heterogeneous in organic than in conventional farming system[J]. Frontiers in Microbiology, 2016, 7: 2064. doi: 10.3389/fmicb.2016.02064. [41] Hu L, Robert C, Selma C, et al.Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9: 2738. doi: 10.1038/s41467-018-05122-7. [42] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12-22. Yang Z, Dai C C, Wang X X, et al.Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12-22. [43] Li Y Y, Feng J, Zheng L, et al.Intercropping with marigold promotes soil health and microbial structure to assist in mitigating tobacco bacterial wilt[J]. Journal of Plant Pathology, 2020, 102: 731-742. [44] Van Wees S C, Van der Ent S, Pieterse C M. Plant immune responses triggered bybeneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11: 443-448. [45] Soman A G, Gloer J B, Wicklow D T.Antifungal and antibacterial metabolites from a sclerotium-colonizing isolate of [46] Maharachchikumbura S, Guo L D, Liu Z Y, et al. [47] Voglmayr H, Rossman A Y, Castlebury L A, et al.Multigene phylogeny and taxonomy of the genus [48] Anthony M A, Frey S D, Stinson K A.Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion[J]. Ecosphere, 2017, 8(9): e01951. doi.org/10.1002/ecs2.1951. [49] 黄兰婷, 倪浩为, 李新宇, 等. 典型红壤水稻土剖面细菌和真菌分子生态网络特征研究[J]. 土壤学报, 2021, 58(4): 1018-1027. Huang L T, Ni H W, Li X Y, et al.Molecular ecological network of bacteria and fungi in paddy soil of typical red soil[J]. Acta Pedologica Sinica, 2021, 58(4): 1018-1027. [50] Zhou Z H, Wang C K, Luo Y Q, et al.Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature Communications, 2020, 11(1): 1-10. [51] Mushinski R M, Gentry T J, Bouttona T W.Organic matter removal associated with forest harvest leads to decade scale alterations in soil fungal communities and functional guilds[J]. Soil Biology and Biochemistry, 2018, 127: 127-136. [52] Du C, Geng Z C, Wang Q, et al.Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest[J]. Journal of Microbiology, 2017, 55(9): 684-693. [53] Lauber C L, Hamady M, Knight R, et al.Pyrosequencing- based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [54] Li Y C, Li Z W, Arafat Y, et al.Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing[J]. Annals of Microbiology, 2020, 70(7): 1-12. [55] Chen B B, Jiao S, Luo S W, et al.High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau[J]. Environmental Microbiology, 2021, 23(1): 464-477. [56] Liu M, Liu J, Jiang C Y, et al.Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus[J]. Biology Fertility of Soils, 2018, 54: 259-267. [57] Lin X G, Feng Y Z, Zhang H Y, et al.Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north china revealed by 454 pyrosequencing[J]. Environmental Science Technology, 2012, 46(11): 5764-5771. [58] Li P F, Liu M, Li G L, et al.Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by ralstonia[J]. Environmental Microbiology, 2021, 23(10): 5992-6003. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 武警, 陈楠楠, 韩梦琳, 陈高, 厉伟伟, 张蜀香, 蒋晓岚. 茶树根系耐铝促生内生细菌的分离鉴定及其特性研究[J]. 茶叶科学, 2022, 42(5): 610-622. |
[3] | 高健健, 陈丹, 彭佳堃, 吴文亮, 蔡良绥, 蔡亚威, 田军, 万云龙, 孙威江, 黄艳, 王哲, 林智, 戴伟东. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学, 2022, 42(5): 623-637. |
[4] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[5] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[6] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[7] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[8] | 陈宇宏, 高颖, 韩震, 尹军峰. 不同种质茶叶籽皂素含量及组成分析[J]. 茶叶科学, 2022, 42(5): 705-716. |
[9] | 陈慧, 杨丽玲, 陈金华, 黄建安, 龚雨顺, 李适. 控温渥堆对黑毛茶香气品质的影响[J]. 茶叶科学, 2022, 42(5): 717-730. |
[10] | 陈珂, 王苑竹, 杨晓颖, 张冬英, 朱强强. 壳聚糖复合β-乳球蛋白负载EGCG纳米粒的制备及其对糖尿病小鼠血糖的影响[J]. 茶叶科学, 2022, 42(5): 731-739. |
[11] | 李峥, 刘锭, 霍增辉, 陈富桥. 中国与RCEP成员国茶叶贸易竞争性与互补性分析[J]. 茶叶科学, 2022, 42(5): 740-752. |
[12] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[13] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[14] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[15] | 赵东伟. 大叶茶(Camellia sinensis var. assamica)的命名、模式及自然分布[J]. 茶叶科学, 2022, 42(4): 491-499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|