[1] 刘丁丁, 梅菊芬, 王君雅, 等. 茶树白化突变研究进展[J]. 中国茶叶, 2020, 42(4): 24-35. Liu D D, Mei J F, Wang J Y, et al.Research progress on albino trait of tea plant[J]. China Tea. 2020, 42(4): 24-35. [2] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015. Li N N.Physiological, biochemical characteristics and molecular albinism of the albino tea (Camellia sinensis) plant[D]. Hangzhou: Zhejiang University, 2015. [3] Wu Q J, Chen Z D, Sun W J, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in Plant Science, 2016, 7: 332. doi: 10.3389/fpls.2016.00332. [4] Ma Q P, Li H, Zou Z W, et al.Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm ‘Huabai 1’[J]. Horticulture Research, 2018, 5: 54. doi: 10.1038/s41438-018-0053-y. [5] Li C F, Ma J Q, Huang D J, et al.Comprehensive dissection of metabolic changes in albino and green tea cultivars[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 2040-2048. [6] Zhang Q F, Liu M Y, Ruan J Y.Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J]. BMC Plant Biology, 2017, 17: 64. doi: 10.1186/s12870-017-1012-8. [7] 杨颜榕, 黄纤纤, 赵亚男, 等. 水稻叶色基因克隆与分子机制研究进展[J]. 植物遗传资源学报, 2020, 21(4): 794-803. Yang Y R, Huang Q Q, Zhao Y N, et al.Advances on gene isolation and molecular mechanism of rice leaf color genes[J]. Journal of Plant Genetic Resources, 2020, 21(4): 794-803. [8] 付修义, 殷鹏飞, 季生辉, 等. 利用转录组测序鉴定玉米白色籽粒突变基因PDS[J]. 中国农业大学学报, 2019, 24(7): 1-9. Fu X Y, Yin P F, Ji S H, et al.Identification of PDS for white kernels in maize via RNA-seq[J]. Journal of China Agricultural University, 2019, 24(7): 1-9. [9] 张国荣. 白化颖壳大麦的遗传、生长发育及生理生化特性研究[D]. 杭州: 浙江大学, 2001. Zhang G R.Studies on the heredity, growth and development, physio-biochemistry of albino-lemma barley[D]. Hangzhou: Zhejiang University, 2001. [10] 江莹芬, 吴新杰, 费维新, 等. 甘蓝型油菜角果特异白化种质的遗传和生理特性[J]. 植物遗传资源学报, 2020, 21(1): 113-120. Jiang Y F, Wu X J, Fei W X, et al.Genetic and physiological characteristics of Brassica napus germplasm resources showing albino silique[J]. Journal of Plant Genetic Resources, 2020, 21(1): 113-120. [11] 闫龙祥, 杨丽梅, 庄木, 等. 甘蓝白化种荚基因alb1的遗传与转录组分析[J]. 中国蔬菜, 2020(4): 36-40. Yan L X, Yang L M, Zhuang M, et al.Inheritance and transcriptome analysis of alb1 gene in albino pod mutant of cabbage[J]. China Vegetables, 2020(4): 36-40. [12] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [13] Qin G J, Gu H Y, Ma L G, et al.Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Research, 2007, 17: 471-482. [14] Hao X Y, Zhang W F, Liu Y, et al.Pale green mutant analyses reveal the importance of CsGLKs in chloroplast developmental regulation and their effects on flavonoid biosynthesis in tea plant[J]. Plant Physiology and Biochemistry, 2020, 146: 392-402. [15] 程红焱, 宋松泉. 种子的贮油细胞器——油体及其蛋白[J]. 植物学通报, 2006, 23(4): 418-430. Cheng H Y, Song S Q.Seed lipid storage organelles: oil bodys and their proteins[J]. Chinese Bulletin of Botany, 2006, 23(4): 418-430. [16] Motohashi R, Nagata N, Ito T, et al.An essential role of a TatC homologue of a ΔpH-dependent protein transporter in thylakoid membrane formation during chloroplast development in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2001, 98(18): 10499-10504. [17] Zhang H T, Li J J, Yoo J H, et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 2006, 62: 325-337. [18] 许燕. 6个特色茶树品种(系)光合特性及叶绿体超微结构研究[D]. 雅安: 四川农业大学, 2016. Xu Y.Study on photosynthetic traits and chloroplast ultrastructure of 6 tea characteristic varieties (lines)[D]. Ya′an: Sichuan Agriculture University, 2016. [19] Lu M Q, Han J Y, Zhu B Y, et al.Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis)[J]. Planta, 2019, 249: 363-376. [20] Yamashita H, Kambe Y, Ohshio M, et al.Integrated metabolome and transcriptome analyses reveal etiolation-induced metabolic changes leading to high amino acid contents in a light-sensitive Japanese albino tea cultivar[J]. Frontiers in Plant Science, 2021, 11: 2194. doi: 10.3389/fpls.2020.611140. [21] Zhang Q F, Liu M Y, Ruan J Y.Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar[J]. Frontiers in Plant Science, 2017, 8: 291. doi: 10.3389/fpls.2017.00291. [22] Pan X W, Cao P, Su X D, et al.Structural analysis and comparison of light-harvesting complexes Ⅰ and Ⅱ[J]. Biochimica et Biophysica Acta (BBA) Bioenergetics, 2020, 1861(4): 148038. doi: 10.1016/j.bbabio.2019.06.010. [23] Mulo P, Medina M.Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications[J]. Photosynthesis Research, 2017, 134: 265-280. [24] Lintala M, Allahverdiyeva Y, Kidron H, et al.Structural and functional characterization of ferredoxin-NADP+-oxidoreductase using knock-out mutants of Arabidopsis[J]. The Plant Journal, 2007, 49(6): 1041-1052. [25] 梅杨, 李海蓝, 谢晋, 等. 核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)[J]. 植物生理学通讯, 2007, 43(2): 363-368. Mei Y, Li H L, Xie J, et al.Ribulose-1,5-bisphosphate Carboxylase/oxygenase (Rubisco)[J]. Plant Physiology Communications, 2007, 43(2): 363-368. [26] 卢倩, 弭晓菊, 崔继哲. 植物甘油醛-3-磷酸脱氢酶作用机制的研究进展[J]. 生物技术通报, 2013, 29(8): 1-6. Lu Q, Mi X J, Cui J Z.Research advances on the mechanism of glyceraldehydes-3-phosphate dehydrogenase in plant[J]. Biotechnology Bulletin, 2013, 29(8): 1-6. [27] 张洋, 刘爱忠. 蓖麻种子油脂累积与可溶性糖变化的关系[J]. 生物技术通报, 2016, 32(6): 120-129. Zhang Y, Liu A Z.The Correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds[J]. Biotechnology Bulletin, 2016, 32(6): 120-129. [28] 张凌云, 王小艺, 曹一博. 油茶果实糖含量及代谢相关酶活性与油脂积累关系分析[J]. 北京林业大学学报, 2013, 35(4): 55-60. Zhang L Y, Wang X Y, Cao Y B.Soluble sugar content and key enzyme activity and the relationship between sugar metabolism and lipid accumulation in developing fruit of Camellia oleifera[J]. Journal of Beijing Forestry University, 2013, 35(4): 55-60. [29] 陈婷. 油菜叶片和角果光合对其籽粒产量及品质的影响[D]. 杨凌: 西北农林科技大学, 2016. Chen T.Influence of leaf and silique photosynthesis on seeds yield and seed soil quality of oilseed rape[D]. Yangling: Northwest A & F University, 2016. [30] 李婷婷, 薛璟祺, 王顺利, 等. 植物非结构性碳水化合物代谢及体内转运研究进展[J]. 植物生理学报, 2018, 54(1): 25-35. Li T T, Xue J Q, Wang S L, et al.Research advances in the metabolism and transport of non-structural carbohydrates in plants[J]. Plant Physiology Journal, 2018, 54(1): 25-35. [31] Barratt D H P, Derbyshire P, Findlay K, et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 13124-13129. [32] Kumar R, Mukherjee S, Ayele B T.Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review[J]. Biotechnology Advances, 2018, 36(4): 954-967. [33] 张明方, 李志凌. 高等植物中与蔗糖代谢相关的酶[J]. 植物生理学通讯, 2002, 38(3): 289-295. Zhang M F, Li Z L.Sucrose-metabolizing enzymes in higher plants[J]. Plant Physiology Communications, 2002, 38(3): 289-295. [34] Nägele T, Henkel S, Hörmiller I, et al.Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism[J]. Plant Physiology, 2010, 153(1): 260-272. |