[1] Tyagi W, Yumnam J S, Sen D, et al.Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype[J]. Scientific Reports, 2020, 10(1): 4580. doi: 10.1038/s41598-020-61305-7. [2] Singh S, Tripathi D K, Singh S, et al.Toxicity of aluminium on various levels of plant cells and organism: a review[J]. Environmental and Experimental Botany, 2017, 137: 177-193. [3] Kopittke P M, Menzies N W, Wang P, et al.Kinetics and nature of aluminiumrhizotoxic effects: a review[J]. Journal of Experimental Botany, 2016, 67(15): 4451-4467. [4] Sjogren C A, Larsen P B.SUV2, which encodes an ATR-related cell cycle checkpoint and putative plant ATRIP, is required for aluminium-dependent root growth inhibition in Arabidopsis[J]. Plant, Cell & Environment, 2017, 40(9): 1849-1860. [5] Sun L, Zhang M, Liu X, et al.Aluminium is essential for root growth and development of tea plants (Camellia sinensis )[J]. Journal of Integrative Plant Biology, 2020, 62(7): 984-997. [6] Fan K, Wang M, Gao Y, et al.Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots’ growth and nutrient uptake[J]. Plant Cell Reports, 2019, 38(6): 715-729. [7] Li Y, Huang J, Song X, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246(1): 91-103. [8] Ghanati F, Morita A, Yokota H.Effects of aluminum on the growth of tea plant and activation of antioxidant system[J]. Plant and Soil, 2005, 276(1/2): 133-141. [9] 刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462. Liu T T, Gao H J, Wan X C, et al.Impacts of aluminum on root cell membrane permeability and organic acids in root exudates of tea plant[J]. Journal of Tea Science, 2011, 31(5): 458-462. [10] Yang T Y, Qi Y P, Huang H Y, et al.Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves[J]. Environmental Pollution, 2020, 262: 114303. doi: 10.1016/j.envpol.2020.114303. [11] Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3): 423-447. [12] Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant & Soil, 2001, 237(2): 173-195. [13] Wang H, Xu R K, Wang N, et al.Soil acidification of alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere, 2010, 20(6): 799-806. [14] 倪康, 廖万有, 伊晓云, 等. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3): 421-432. Ni K, Liao W Y, Yi X Y, et al.Fertilization status and reduction potential in tea gardens of China[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(3): 421-432. [15] Yan P, Shen C, Fan L, et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture, Ecosystems & Environment, 2018, 254: 20-25. doi: 10.1016/j.apsoil.2022.104661. [16] 阮宇成, 陈瑞锋. 铝磷对茶树生长及养分吸收的影响[J]. 中国茶叶, 1986, 8(1): 2-5. Ruan Y C, Chen R F.Effects of aluminum and phosphorus on growth and nutrient absorption of tea plant[J]. China Tea, 1986, 8(1): 2-5. [17] Wan Q, Xu R K, Li X H.Proton release by tea plant (Camellia sinensis L.) roots as affected by nutrient solution concentration and pH[J]. Plant, Soil and Environment, 2012, 58(9): 429-434. [18] Chen R F, Shen R F, Gu P, et al.Response of rice (Oryza sativa ) with root surface iron plaque under aluminium stress[J]. Annals of Botany, 2006, 98(2): 389-395. [19] 庞鑫, 王玉花, 王伟东, 等. 修剪物与茶多酚对茶树矿质吸收及根系有机酸分泌的影响[J]. 茶叶科学, 2014, 34(6): 591-600. Pang X, Wang Y H, Wang W D, et al.Effects of tea pruning materials and tea polyphenols on organic acids secretion and mineral uptake in tea plant[J]. Journal of Tea Science, 2014, 34(6): 591-600. [20] Mora M, Demanet R, Acuña J J, et al.Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure[J]. Applied Soil Ecology, 2017, 115: 19-26. [21] Liang C, Piñeros M A, Tian J, et al.Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiology, 2013, 161(3): 1347-1361. [22] Balzergue C, Dartevelle T, Godon C, et al.Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nature Communications, 2017, 8(1): 15300. doi: 10.1038/ncomms15300. [23] Xu Q, Wang Y, Ding Z, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172. [24] Zheng S J, Yang J L, He Y F, et al.Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat[J]. Plant Physiology, 2005, 138(1): 297-303. [25] Chamuah G S.The effect of nitrogen on root growth and nutrient uptake of young tea plants (Camellia sinensis L.) grown in sand culture[J]. Fertilizer Research, 1988, 16(1): 59-65. [26] Konishi S, Miyamoto S, Taki T.Stimulatory effects of aluminum on tea plants grown under low and high phosphorus supply[J]. Soil Science and Plant Nutrition, 1985, 31(3): 361-368. [27] Qu X, Zhou J, Masabni J, et al.Phosphorus relieves aluminum toxicity in oil tea seedlings by regulating the metabolic profiling in the roots[J]. Plant Physiology and Biochemistry, 2020, 152: 12-22. |