[1] 吴平昌, 李尤学. 陕南茶区茶脊冠网蝽发生现状和防控研究[J]. 陕西农业科学, 2014, 60(3): 73-76. Wu P C, Li Y X.Study of the occurrence and control of Stephanitis chinensis Drake in the tea field of south Shaanxi[J]. Shaanxi Journal of Agricultural Sciences, 2014, 60(3): 73-76. [2] 田忠正. 茶脊冠网蝽发生规律与防治技术研究[D]. 杨凌: 西北农林科技大学, 2017. Tian Z Z.Study of occurrence and control techniques on Stephanitis chinensis Drake[D]. Yangling: Northwest A&F University, 2017. [3] 陈孝钧, 吴平昌, 马荣彬, 等. 镇巴茶区一种新发生的害虫——茶网蝽[J]. 中国茶叶, 2013, 35(8): 16-17. Chen X J, Wu P C, Ma R B, et al.A new pest in Zhenba tea area: Stephanitis chinensis Drake[J]. China Tea, 2013, 35(8): 16-17. [4] 张锡友, 罗碧安, 孙光德, 等. 陕南茶脊冠网蝽蔓延威胁及有效防控对策思考[J]. 茶业通报, 2017, 39(3): 130-132. Zhang X Y, Luo B A, Sun G D, et al.Spreading threat and effective control strategy of Stephanitis chinensis Drake in south Shaanxi[J]. Journal of Tea Business, 2017, 39(3): 130-132. [5] 王梦思. 茶脊冠网蝽的生物学特性及防治研究[D]. 武汉: 湖北大学, 2019. Wang M S.Study on the biological characteristics and control of Stephanitis chinensis Drake[D]. Wuhan: Hubei University, 2019. [6] Crampton-Platt A, Yu D W, Zhou X, et al.Mitochondrial metagenomics: letting the genes out of the bottle[J]. GigaScience, 2016, 5(1): 15. doi: 10.1186/s13742-016-0120-y. [7] Song F, Li H, Jiang P, et al.Capturing the phylogeny of holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models[J]. Genome Biology and Evolution, 2016, 8(5): 1411-1426. [8] Yang H H, Li T, Dang K, et al.Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera)[J]. BMC Genomics, 2018, 19: 264. doi: 10.1186/s12864-018-4650-9. [9] Jin J J, Yu W B, Yang J B, et al.GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21: 241. doi: 10.1186/s13059-020-02154-5. [10] Dierckxsens N, Mardulyn P, Smits G.NOVOPlasty: de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Research, 2017, 45(4): e18. doi: 10.1093/nar/gkw955. [11] Wick R R, Schultz M B, Zobel J, et al.Bandage: interactive visualization of de novo genome assemblies[J]. Bioinformatics, 2015, 31: 3350-3352. [12] Bernt M, Donath A, Jühling F, et al.MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. [13] Greiner S, Lehwark P, Bock R.OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1): W59-W64. [14] Chan P P, Lowe T M. tRNAscan-SE: searching for tRNA genes in genomic sequences[J]. Methods in Molecular Biology, 2019, 1962: 1-14. [15] Benson G.Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic Acids Research, 1999, 27(2): 573-580. [16] Beier S, Thiel T, Münch T, et al.MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33: 2583-2585. [17] Zuker M.Mfold web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Research, 2003, 31(13): 3406-3415. [18] Tamura K, Stecher G, Kumar S.MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. [19] Perna N T, Kocher T D.Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes[J]. Journal of Molecular Evolution, 1995, 41(3): 353-358. [20] Ranwez V, Harispe S, Delsuc F, et al.MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons[J]. PLoS One, 2011, 6(9): e22594. doi: 10.1371/journal.pone.0022594. [21] Stamatakis A.RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models[J]. Bioinformatics, 2006, 22(21): 2688-2690. [22] Clary D O, Wolstenholme D R.The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code[J]. Journal of Molecular Evolution, 1985, 22(3): 252-271. [23] 张玉波, 史娅琴, 孙翠英. 长尾管蚜蝇Eristalis tenax (Linnaeus, 1758)线粒体基因组测序及分析[J]. 基因组学与应用生物学, 2019, 38(12): 5371-5378. Zhang Y B, Shi Y Q, Sun C Y.Sequencing and analysis of the mitochondrial genome of Eristalis tenax (Linnaeus, 1758)[J]. Genomics and Applied Biology, 2019, 38(12): 5371-5378. [24] 钟健, 刘增虎, 杨伟克, 等. 琥珀蚕线粒体全基因组测序及序列分析[J]. 昆虫学报, 2017, 60(8): 936-949. Zhong J, Liu Z H, Yang W K, et al.Sequencing and analysis of the complete mitochondrial genome of Antheraea assama (Lepidoptera: Saturniidae)[J]. Acta Entomologica Sinica, 2017, 60(8): 936-949. [25] Bae J S, Kim I, Sohn H D, et al.The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects[J]. Molecular Phylogenetics and Evolution, 2004, 32: 978-985. [26] 俞鹏飞, 李倩, 王梦馨, 等. 凹大叶蝉线粒体全基因组序列分析及系统发育关系[J]. 农业生物技术学报, 2019, 27(7): 1246-1258. Yu P F, Li Q, Wang M X, et al.Analysis of complete mitochondrial genome and phylogenetic relationship of Bothrogonia ferruginea[J]. Journal of Agricultural Biotechnology, 2019, 27(7): 1246-1258. [27] Zhang D X, Hewitt G M.Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies[J]. Biochemical Systematics and Ecology, 1997, 25(2): 99-120. [28] Boyce T M, Zwick M E, Aquadro C F.Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy[J]. Genetics, 1989, 123(4): 825-836. [29] Taanman J W.The mitochondrial genome: structure, transcription, translation and replication[J]. Biochimica et Biophysica Acta, 1999, 1410(2): 103-123. [30] Cui Y, Dong P Z, Hua J M, et al.The complete mitochondrial genome of Aquarius paludum (Fabricius) (Insecta, Hemiptera, Gerridae)[J]. Acta Zootaxonomica Sinica, 2012, 37(2): 255-262. [31] 郭鹏磊, 吴燕卓, 王艳会, 等. 大黑毛肩长蝽(半翅目:异翅亚目:地长蝽科)线粒体基因组及地长蝽科系统发育地位探讨[J]. 环境昆虫学报, 2017, 39(2): 314-331. Guo P L, Wu Y Z, Wang Y H, et al.The complete mitochondrial genome of Neolethaeus assamensis (Hemiptera: Heteroptera: Rhyparochromidae) and the implication for the phylogenetic position of Rhyparochromidae in Lygaeoidea[J]. Journal of Environmental Entomology, 2017, 39(2): 314-331. [32] Li P W, Wang X Q, Chen S C, et al.The complete mitochondrial genome of the tea lace bug, Stephanitis chinensis (Hemiptera: Tingidae)[J]. Mitochondrial DNA Part B, 2017, 2(2): 607-608. [33] Monroe J G, Srikant T, Carbonell-Bejerano P, et al.Mutation bias reflects natural selection in Arabidopsis thaliana[J]. Nature, 2022, 602(7895): 101-105. [34] Wilson J J, Sing K W, Jaturas N.DNA barcoding: bioinformatics workflows for beginners[J]. Encyclopedia of Bioinformatics and Computational Biology, 2019, 3: 985-995. [35] Coucheron D H, Nymark M, Breines R, et al.Characterization of mitochondrial mRNAs in codfish reveals unique features compared to mammals[J]. Current Genetics, 2011, 57(3): 213-222. [36] Schuh R T, Weirauch C, Wheeler W C.Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis[J]. Systematic Entomology, 2009, 34(1): 15-48. [37] Wang Y H, Cui Y, Rédei D, et al.Phylogenetic divergences of the true bugs (Insecta: Hemiptera: Heteroptera), with emphasis on the aquatic lineages: the last piece of the aquatic insect jigsaw originated in the Late Permian/Early Triassic[J]. Cladistics, 2016, 32(4): 390-405. [38] Wang Y H, Wu H Y, Rédei D, et al.When did the ancestor of true bugs become stinky? Disentangling the phylogenomics of Hemiptera-Heteroptera[J]. Cladistics, 2019, 35(1): 42-66. [39] Liu Y, Song F, Jiang P, et al.Compositional heterogeneity in true bug mitochondrial phylogenomics[J]. Molecular Phylogenetics and Evolution, 2018, 118: 135-144. [40] Li H, Leavengood J M, Chapman E G, et al.Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs[J]. Proceedings of the Royal Society B, 2017, 284: 20171223. doi: 10.1098/rspb.2017.1223. |