[1] 刘丁丁, 梅菊芬, 王君雅, 等. 茶树白化突变研究进展[J]. 中国茶叶, 2020, 42(4): 24-35. Liu D D, Mei J F, Wang J Y, et al.Research progress on albino trait of tea plant[J]. China Tea, 2020, 42(4): 24-35. [2] 王开荣, 李明, 梁月荣, 等. 茶树新品种黄金芽选育研究[J]. 中国茶叶, 2008, 30(4): 21-23. Wang K R, Li M, Liang Y R, et al.Study on breeding of new tea variety ‘Huangjinya’[J]. China Tea, 2008, 30(4): 21-23. [3] 虞富莲. 中黄1号、中黄2号的特异性、一致性和稳定性[J]. 中国茶叶, 2016, 38(3): 14-16. Yu F L.Distinctness uniformity and stability of ‘Zhonghuang 1’ and ‘Zhonghuang 2’[J]. China Tea, 2016, 38(3): 14-16. [4] 张友炯, 曾建明, 章志芳, 等. 白化茶树新品种“中白1号”选育报告[J]. 中国茶叶, 2016, 38(3): 22-24. Zhang Y J, Zeng J M, Zhang Z F, et al.Breeding report of a new albino tea variety ‘Zhongbai 1’[J]. China Tea, 2016, 38(3): 22-24. [5] 陈亮, 杨亚军, 虞富莲, 等. 15个茶树品种遗传多样性的RAPD分析[J]. 茶叶科学, 1998, 18(1): 21-27. Chen L, Yang Y J, Yu F L, et al.Genetic diversity of 15 tea (Camellia sinensis (L.) O. Kuntze) cultivars using RAPD markrrs[J]. Journal of Tea Science, 1998, 18(1): 21-27. [6] 黎星辉, 章传政, 刘春林, 等. 中国茶组植物种质资源遗传多样性的RAPD分析[J]. 园艺学报, 2007, 34(2): 507-508. Li X H, Zhang C Z, Liu C L, et al.RAPD analysis of the genetic diversity in chinese tea germplasm[J]. Acta Horticulturae Sinica, 2007, 34(2): 507-508. [7] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154-158. Tang L Q, Xiao C L, Wang W P.Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 154-158. [8] 李长乐, 葛悦, 闫美琳, 等. 32份茶树地方群体种资源的遗传多样性和群体结构分析[J]. 茶叶科学, 2021, 41(5): 619-630. Li C L, Ge Y, Yan M L, et al.Analysis of genetic diversity and population structure of 32 tea landraces in China[J]. Journal of Tea Science, 2021, 41(5): 619-630. [9] 陈立杰, 张素勤, 尹杰, 等. 贵阳花溪古茶树遗传进化的SNP分析[J]. 西南大学学报(自然科学版), 2019, 41(8): 33-40. Chen L J, Zhang S Q, Yin J, et al.SNP analysis of the genetic evolution of ancient Camellia sinensis tress from Huaxi, Guiyang[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(8): 33-40. [10] 樊晓静, 于文涛, 蔡春平, 等. 利用SNP标记构建茶树品种资源分子身份证[J]. 中国农业科学, 2021, 54(8): 1751-1772. Fan X J, Yu W T, Cai C P, et al.Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism (SNP) markers[J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1772. [11] Huang R, Wang J Y, Yao M Z, et al. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants [J]. Horticulture Research, 2022, 9: uhab029. doi: 10.1093/hr/uhab029. [12] 方治伟, 周俊飞, 刘致浩, 等. 一种筛选植物高多态性分子标记位点的方法: CN107815489B[P].2021-06-29. Fang Z W, Zhou J F, Liu Z H, et al. A method for screening highly polymorphic molecular markers in plants: CN107815489B [P].2021-06-29. [13] 徐云碧, 杨泉女, 郑洪建, 等. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53(15): 2983-3004. Xu Y B, Yang Q N, Zheng H J, et al.Genotyping by target sequencing (GBTS) and its applications[J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. [14] Guo Z, Yang Q, Huang F, et al.Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip[J]. Plant Communications, 2021, 2(6): 100230. doi: 10.1016/j.xplc.2021.100230. [15] 蒋成功, 石慧敏, 王红武, 等. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. Jiang C G, Shi H M, Wang H W, et al.Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize[J]. Acta Agronomica Sinica, 2021, 47(2): 285-293. [16] 陈宇, 邱奥, 张梓鹏, 等. 猪SNP液相芯片10K~50K基因型填充效果研究[J]. 畜牧兽医学报, 2022, 53(10): 3368-3376. Chen Y, Qiu A, Zhang Z P, et al.Study on the genotype imoutation effect of 10K-50K genotype of pig SNP liquid chip[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3368-3376. [17] 邱奥, 王雪, 孟庆利, 等. 3款猪50K SNP芯片基因型填充效果研究[J]. 中国畜牧杂志, 2021, 57(s1): 33-38. Qiu A, Wang X, Meng Q L, et al.Study on genotype filling effect of three kinds of 50K SNP chips[J]. Chinese Journal of Animal Science, 2021, 57(s1): 33-38. [18] 王松琳, 马春雷, 黄丹娟, 等. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学, 2018, 38(1): 58-68. Wang S L, Ma C L, Huang D J, et al.Analysis of genetic diversity and construction of DNA fingerprints of chorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science, 2018, 38(1): 58-68. [19] 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013-6019. Li J J, Yu X D, Cai Z P, et al.An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013-6019. [20] 张彬, 李萌, 刘晶, 等. 绿小米和白小米谷子籽粒叶绿素合成途径结构基因的表达分析[J]. 中国农业科学, 2020, 53(12): 2331-2339. Zhang B, Li M, Liu J, et al.expression analysis of the chorophyll biosynthesis structural genes in green and white foxtail millet [Setaria italica (L.) Beauv][J]. Scientia Agricultura Sinica, 2020, 53(12): 2331-2339. [21] 张稳, 孟淑君, 王琪月, 等. 玉米pTAC2影响苗期叶片叶绿素合成的转录组分析[J]. 中国农业科学, 2020, 53(5): 874-889. Zhang W, Meng S J, Wang Q Y, et al.Transcriptome analysis of maize pTAC2 effects on chlorophyll synthesis in seeding leaves[J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889. [22] 袁金红, 李俊华, 黄小城, 等. 基于全基因组重测序的SNP分析在作物基因定位中的研究进展[J]. 植物生理学报, 2015, 51(9): 1400-1404. Yuan J H, Li J H, Huang X C, et al.Advance of SNP analysis based on whole genome resequencing in crop gene mapping[J]. Plant Physiology Journal, 2015, 51(9): 1400-1404. [23] 李国治, 邓卫东. 基因组测序技术及其应用研究进展[J]. 安徽农业科学, 2018, 46(22): 20-22, 25. Li G Z, Deng W D.Research progress and application of genome sequencing technology[J]. Journal of Anhui Agricultural Sciences, 2018, 46(22): 20-22, 25. [24] 马春雷, 姚明哲, 王新超, 等. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达分析[J]. 作物学报, 2015, 41(2): 240-250. Ma C L, Yao M Z, Wang X C, et al.Cloning and expression of three genes involved in chlorophyll biosynthesis at different albescent stages of tea plant variety ‘Baiye1’[J]. Acta Agronomica Sinica, 2015, 41(2): 240-250. [25] 曹璐, 于旭东, 蔡泽坪, 等. 植物叶色白化的研究进展[J]. 分子植物育种, 2019, 17(16): 5390-5397. Cao L, Yu X D, Cai Z P, et al.Research progress of plant leaf albino[J]. Molecular Plant Breeding, 2019, 17(16): 5390-5397. [26] Li N N, Lu J L, Li Q S, et al.Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar ‘Xiaoxueya’ reveals an albino phenotype and metabolite formation[J]. Frontiers in Plant Science, 2019, 10: 1543. doi: 10.3389/fpls.2019.01543. [27] 王涛, 王艺清, 漆思雨, 等. 茶树CLH基因家族的鉴定与转录调控研究及其在白化茶树中的表达分析[J]. 茶叶科学, 2022, 42(3): 331-346. Wang T, Wang Y Q, Qi S Y, et al.Identification and transcriptional regulation of CLH gene family and expression analysis in albion tea plants (Camellis sinensis)[J]. Journal of Tea Science, 2022, 42(3): 331-346. [28] Liu Y C, Liu S L, Zhang Z F, et al.GenoBaits Soy40K: a highly flexible and low-cost SNP array for soybean studies[J]. Science China Life Sciences, 2022, 65(9): 1898-1901. [29] Lin Y, Jiang X J, Hu H Y, et al.QTL mapping for grain number per spikelet in wheat using a high-density genetic map[J]. The Crop Journal, 2021, 9(5): 1108-1114. [30] Huang S, Zhang Y, Ren H, et al.Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9[J]. Theoretical and Applied Genetics, 2022, 135(7): 2501-2513. [31] Li S N, Lin D X, Zhang Y W, et al.Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602(7897): 455-460. [32] Guo Z F, Wang H W, Tao J J, et al.Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize[J]. Molecular Breeding, 2019, 39(3): 37. doi: 10.1007/s11032-019-0940-4. [33] 丁向东, 王楚端, 张勤. 基于液相芯片的猪基因组选择实施新策略[J]. 中国畜牧杂志, 2022, 58(4): 65-69. Ding X D, Wang C D, Zhang Q.New strategy of pig genome selection based on liquid chip[J]. Chinese Journal of Animal Science, 2022, 58(4): 65-69. [34] 徐云碧, 王冰冰, 张健, 等. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870. Xu Y B, Wang B B, Zhang J, et al.Enhancement of plant variety protection and regulation using molecular market technology[J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870. [35] Xia E H, Zhang H B, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877. [36] Chen J D, Zheng C, Ma J Q, et al.The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant[J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2. [37] Goodwin S, Mcpherson J D, Mccombie W R.Coming of age: ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17: 333-351. |