[1] Cherqui A, Tjallingii W F.Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation[J]. Journal of Insect Physiology, 2000, 46(8): 1177-1186. [2] Huo Y, Zhao J, Meng X Y, et al.Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission[J]. Pest Management Science, 2022, 78(8): 3498-3507. [3] Rao S A K, Carolan J C, Wilkinson T L. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins[J]. Plos One, 2013, 8(2): e57413. doi: 10.1371/journal.pone.0057413. [4] Huang H J, Liu C W, Cai Y F, et al.A salivary sheath protein essential for the interaction of the brown planthopper with rice plants[J]. Insect Biochemistry and Molecular Biology, 2015, 66: 77-87. [5] Chen C Y, LiuY Q, Song W M, et al. An effector from cotton bollworm oral secretion impairs host plant defense signaling[J]. PNAS, 2019, 116(28): 14331-14338. [6] Will Torsten, Vilcinskas Andreas.The structural sheath protein of aphids is required for phloem feeding[J]. Insect Biochemistry and Molecular Biology, 2015, 57: 34-40. [7] Huang H J, Liu C W, Xu H J, et al.Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation[J]. Journal of Insect Physiology, 2017, 98: 223-230. [8] 金珊. 不同茶树品种抗假眼小绿叶蝉机理研究[D]. 杨凌: 西北农林科技大学, 2012. Jin S.Resistance mechanisms of tea plant cultivars to tea green leafhopper [D]. Yangling: Northwest A&F University, 2012. [9] Eitle M W, Carolan J C, Griesser M, et al.The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp[J]. Plos One, 2019, 14(12): e0225881. doi: 10.1371/journal.pone.0225881. [10] Will T, Vilcinskas A.The structural sheath protein of aphids is required for phloem feeding[J]. Insect Biochemistry and Molecular Biology, 2015, 57: 34-40. [11] Mutti N S, Louis J, Pappan L K, et al.A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant[J]. PNAS, 2008, 105(29): 9965-9969. [12] 金珊, 孙晓玲, 陈宗懋, 等. 昆虫刺探电位图谱(EPG)技术在茶树抗刺吸式口器害虫研究中的应用[J]. 茶叶科学, 2012, 32(5): 393-401. Jin S, Sun X L, Chen Z M, et al.Applications of electric penetration graph (EPG) technique in the research of resistance of tea plant to piercing-sucking insects[J]. Journal of Tea Science, 2012, 32(5): 393-401. [13] Jin S, Chen Z M, Backus E A, et al.Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities[J]. Journal of Insect Physiology, 2012, 58: 1235-1244. [14] Naskar S, Roy C, Ghosh S, et al.Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Camellia sinensis (L.) Kuntze)[J]. Applied Microbiology and Biotechnology, 2021, 105(19): 7187-7199. [15] Zhang Y, Fu Y, Francis F, et al.Insight into watery saliva proteomes of the grain aphid, Sitobion avenae[J]. Archives of Insect Biochemistry and Physiology, 2021, 106(1): e21752. doi: 10.1002/arch.21752. [16] Shao E S, Song Y J, Wang Y M, et al.Transcriptomic and proteomic analysis of putative digestive proteases in the salivary gland and gut of Empoasca (Matsumurasca) onukii Matsuda[J]. BMC Genomics, 2021, 22(1): 271. doi: 10.21203/rs.3.rs-25607/v2. [17] Wu Z Z, Qu M Q, Chen M S, et al.Proteomic and transcriptomic analyses of saliva and salivary glands from the Asian citrus psyllid, Diaphorina citri[J]. Journal of Proteomics, 2021, 238: 104136. doi: 10.1016/j.jprot.2021.104136. [18] Wiśniewski J R, Zougman A, Nagaraj N, et al.Universal sample preparation method for proteome analysis[J]. Nature Methods, 2009, 6(5): 359-362. [19] Ashburner M, Ball C A, Blake J A, et al.Gene ontology: tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29. [20] Kanehisa M, Goto S, Sato Y, et al.KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Research, 2012, 40(D1): D109-D114. [21] 严盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用[J]. 昆虫学报, 2008, 59(5): 537-544. Yan Y, Liu W X, Wan F H.Roles of salivary components in piercing-sucking insect-plant interations[J]. Acta Entomologica Sinica, 2008, 51(1): 537-544. [22] Vandermoten S, Harmel N, Mazzucchelli G, et al.Comparative analyses of salivary proteins from three aphid species[J]. Insect Molecular Biology, 2014, 23(1): 67-77. [23] Zeng F, Cohen A C.Comparison of α-amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000, 126(1): 101-106. [24] DeLay B, Mamidala P, Wijeratne A, et al. Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae[J]. Journal of Insect Physiology, 2012, 58(12): 1626-1634. [25] Kim S C, Yao S B, Zhang Q, et al.Phospholipase Dδ and phosphatidic acid mediate heat-induced nuclear localization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis[J]. The Plant Journal, 2022, 12(3): 786-799. [26] Foissac X, Edwards M G, Du J P, et al.Putative protein digestion in a sap-sucking homopteran plant pest (rice brown plant hopper; Nilaparvata lugens: Delphacidae): identification of trypsin-like and cathepsin B-like proteases[J]. Insect Biochemistry and Molecular Biology, 2002, 32(9): 967-978. [27] Wu W, Yi G, Lv X W, et al.A leafhopper saliva protein mediates horizontal transmission of viral pathogens from insect vectors into rice phloem[J]. Communications Biology, 2022, 5: 204. doi: 10.1038/s42003-022-03160-y. [28] Backus E A, Serrano M S, Ranger C M.Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology[J]. Annual Review of Entomology, 2005, 50: 125-151. |