[1] 朱咏珊, 罗晓欣, 梁浩然, 等. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100. Zhu Y S, Luo X X, Liang H R, et al.Identification of a tea rhizosphere bacterium and its biocontrol of tea anthracnose disease[J]. Journal of Tea Science, 2022, 42(1): 87-100. [2] 王春晓, 高峰, 陈富桥, 等. “一带一路”倡议对中国茶叶出口的影响—基于渐进双重差分模型的实证分析[J]. 茶叶科学, 2021, 41(6): 865-875. Wang C X, Gao F, Chen F Q, et al.Did the “belt and road” initiative promote the export of China’s tea? —an empirical study based on the generalized DID[J]. Journal of Tea Science, 2021, 41(6): 865-875. [3] 王雪, 王勇, 尹桥秀, 等. 贵州省余庆县茶褐枯病病原菌的鉴定[J]. 植物保护, 2020, 46(2): 101-106. Wang X, Wang Y, Yin Q X, et al.Identification of the pathogen of tea brown blight in Yuqing county, Guizhou province[J]. Plant Protection, 2020, 46(2): 101-106. [4] Chen Y J, Zeng L, Liang S N, et al.First report of Pestalotiopsis camelliae causing grey blight disease on Camellia sinensis in China[J]. Plant Disease, 2017, 101(6): 10-34. [5] 赵晓珍, 王勇, 李冬雪, 等. 茶树新病害病原菌Phoma segeticola var.camelliae的形态学特征及系统学分析[J]. 植物病理学报, 2018, 48(4): 556-559. Zhao X Z, Wang Y, Li D X, et al.Morphological characterization and phylogenetic analysis of the pathogen Phoma segeticola var. camelliae causing a new tea disease[J]. Acta Phytopathologica Sinica, 2018, 48(4): 556-559. [6] Kuberan T, Deng C, Cheng L L, et al.Report of Phoma herbarum causing leaf spot disease of Camellia sinensis in China[J]. Plant Disease, 2018, 102(1): 23-73. [7] Xu W, Zhao F, Deng X X, et al.First report of collar canker and dieback of Camellia sinensis caused by Fusarium solani species complex in Henan, China[J]. Plant Disease, 2022, 106(8): 2263. doi: 10.1094/PDIS-07-21-1517-PDN. [8] Sinniah G D, Munasinghe C E, Mahadevan N, et al.Recent incidence of collar canker and dieback of tea (Camellia sinensis) caused by Fusarium solani species complex in Sri Lanka[J]. Australasian Plant Disease, 2017, 12: 41. doi: 10.1007/s13314-017-0262-5. [9] Satya R S, Pradip K B, Suresh C D.Practical utilization of botanical extracts and microbial in controlling dieback disease of tea [Camellia sinensis (L) O. Kuntze] caused by Fusarium solani (Mart.) Sacc[J]. Journal of Tea Science Research, 2017, 17(2): 11-19. [10] Wang Y C, Hao X Y, Wang L, et al.Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China[J]. Scientific Reports, 2016, 6(1): 35287. doi: 10.1038/srep35287. [11] Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola[J]. Journal of Agricultural and Food Chemistry, 2016, 64(35): 6685-6693. [12] 胡娴, 陈宸彤, 谢杨鋆, 等. 钩状木霉菌的生物学特性及对腐皮镰刀菌的抑菌机理研究[J]. 中国生物防治学报, 2022, 38(1): 81-87. Hu X, Chen C T, Xie Y J, et al.Study on biological characteristics of Trichoderma hamatum and the inhibited mechanism on Fusarium solani[J]. Chinese Journal of Biological Control, 2022, 38(1): 81-87. [13] Kriaa M, Hammami I, Sahnoun M, et al.Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase[J]. Comptes Rendus Biologies, 2015, 338(10): 666-677. [14] Moussa Tarek A A, Rizk M A. Biocontrol of sugarbeet pathogen Fusarium solani (Mart.) Sacc. by Streptomyces aureofaciens[J]. Pakistan Journal of Biological Sciences, 2002, 5(5): 556-559. [15] Rojo F G, Reynoso M M, Ferez M, et al.Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions[J]. Crop Protection, 2007, 26(4): 549-555. [16] 李凤霞, 张德罡, 姚拓. 高寒地区燕麦根际高效PGPR菌培养条件研究[J]. 甘肃农业大学学报, 2004, 39(3): 316-320. Li F X, Zhang D G, Yao T.Study on cultural conditions of plant growth promoting rhizobacteria in rhizosphere of oat in alpine region[J]. Journal of Gansu Agricultural University, 2004, 39(3): 316-320. [17] 黄静, 盛下放, 何琳燕. 具溶磷能力的植物内生促生细菌的分离筛选及其生物多样性[J]. 微生物学报, 2010, 50(6): 710-716. Huang J, Sheng X F, He L Y.Isolation, screening and biodiversity of phosphorus-solubilizing endophytic bacteria from plants[J]. Acta Microbiological Sinica, 2010, 50(6): 710-716. [18] De Lyra M C C P, Santos D C, Mondragon Jacobo C, et al. Isolation and molecular characterization of endophytic bacteria associated with forage cactus (Opuntia spp.)[J]. Journal of Applied Biotechnology, 2013, 1(1): 11-16. [19] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2): 793-796. [20] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. Dong X Z, Cai M Y.Manual for systematic identification of common bacteria [M]. Beijing: Science Press, 2001. [21] Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology And Evolution, 2016, 33(7): 1870-1874. [22] 刘国强, 旭格拉·哈布丁, 艾山江, 等. 黑果枸杞根际促生菌的筛选鉴定及促生能力分析[J]. 厦门大学学报, 2019, 58(1): 56-62. Liu G Q, Habden X, Ai S J, et al.Isolation and identification of growth-promoting rhizobacteria from Lycium ruthenicumsoil and their promoting effects[J]. Journal of Xiamen University, 2019, 58(1): 56-62. [23] 何碧珀, 郝学政, 刘红彦, 等. 解淀粉芽孢杆菌B10-26对芝麻的促生防病效果及其定殖能力分析[J]. 河南农业科学, 2018, 47(12): 78-83. He B B, Hao X Z, Liu H Y, et al.Analysis of growth-promotion, disease control effect and colonization capacity of Bacillus amyloliquefaciens B10-26 in sesame[J]. Journal of Henan Agricultural Sciences, 2018, 47(12): 78-83. [24] 王明江, 章如意, 林多多, 等. 棉花黄萎病不同抗性品种内生菌数量调查与拮抗菌筛选[J]. 江苏农业科学, 2010(2): 102-104. Wang M J, Zhang R Y, Lin D D, et al.Investigation of endophytic bacteria and screening of antagonistic bacteria in cotton verticillium wilt resistant varieties[J]. Journal of Jiangsu Agricultural Sciences, 2010(2): 102-104. [25] 陈奕鹏, 杨扬, 桑建伟, 等. 拮抗内生芽孢杆菌BEB17分离鉴定及其挥发性物质抑菌活性分析[J]. 植物病理学报, 2018, 48(4): 537-546. Chen Y P, Yang Y, Sang J W, et al.Isolation and identification of antagonistic endophytic bacillus BEB17 and analysis of antibacterial activity of volatile organic compounds[J]. Acta Phytoecologica Sinica, 2018, 48(4): 537-546. [26] 覃照标. 茶叶病虫害综合防治技术探讨[J]. 南方农业, 2021, 15(6): 52-53. Tan Z B.Discussion on integrated pest control technology of tea[J]. South China Agriculture, 2021, 15(6): 52-53. [27] 刘远康, 龚兴红. 生物技术在有机茶园病虫害防治中的应用[J]. 植物医生, 2001, 14(3): 21-26. Liu Y K, Gong X H.Application of biotechnology in pest control of organic tea garden[J]. Plant Doctors, 2001, 14(3): 21-26. [28] 许玫, 陈文品. 病原微生物在茶树病虫生物防治中的研究与应用[J]. 中国茶叶, 2003, 25(5): 16-17. Xu M, Chen W P.Research and application of pathogenic microorganisms in biological control of tea plant diseases and pests[J]. China Tea, 2003, 25(5): 16-17. [29] 高旭辉, 高曙辉. 茶树叶面微域环境的病理剖析[J]. 中国茶叶加工, 2000(4): 34-37. Gao X H, Gao S H.Pathological analysis of tea leaf microenvironment[J]. China Tea Processing, 2000(4): 34-37. [30] Saito S S, Hamasaka T, Nemoto S, et al.Multiresidue determination of pesticides in tea by liquid chromatography high resolution mass spectrometry: comparison between orbitrap and time of flight mass analyzers[J]. Food Chemistry, 2018, 256: 140-148. [31] Pravin V, Rosazlin A, Tumirah K, et al.Role of plant growth promoting rhizobacteria in agricultural sustainability: a review[J]. Molecules, 2016, 21(5): 1-17. [32] 张红, 吕家珑, 曹莹菲, 等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, 51(4): 743-752. Zhang H, Lv J L, Cao Y F, et al.Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4): 743-752. [33] 李交昆, 余黄, 曾伟民, 等. 根际促生菌强化植物修复重金属污染土壤的研究进展[J]. 生命科学, 2017, 29(5): 434-442. Li J K, Yu H, Zeng W M, et al.Research progress on plant growth promoting rhizobacteria and their role in phytoremediation of heavy metal contaminated soil[J]. Chinese Bulletin of Life Sciences, 2017, 29(5): 434-442. [34] 李华山, 雷鹏, 许宗奇, 等. 耐盐促生菌Agrobacterium sp. DF-2增强黄瓜幼苗耐盐性的研究[J]. 江苏农业学报, 2017, 33(3): 654-661. Li H S, Lei P, Xu Z Q, et al.Halotolerance in cucumber seedlings enhanced by plant growth promoting rhizobacterium Agrobacterium sp. DF-2[J]. Jiangsu Journal of Agriculture Science, 2017, 33(3): 654-661. [35] 刘方春, 邢尚军, 马海林, 等. 干旱胁迫下植物根际促生细菌对侧柏生长及生理生态特征的影响[J]. 林业科学, 2014, 50(6): 67-73. Liu F C, Xing S J, Ma H L, et al.Effects of plant growth promoting rhizobacteria on physio-ecological characteristics of Platycladus orientalis under drought stress[J]. Scientia Silvae Sinicae, 2014, 50(6): 67-73. [36] Khan N, Banoa A.Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater[J]. International Journal of Phytoremediation, 2016, 18(12): 1258-1269. [37] Ye M, Tang X, Yang R, Zhang H, et al.Characteristics and application of a novel species of Bacillus: Bacillus velezensis[J]. ACS Chemical Biology, 2018, 13(3): 500-505. [38] 夏明聪, 邓晓旭, 齐红志, 等. 贝莱斯芽孢杆菌YB-145对小麦纹枯病的防治效果及促生作用[J]. 河南农业科学, 2021, 50(10): 76-83. Xia M C, Deng X X, Qi H Z, et al.Biological control of sharp eyespot and growth promotion in wheat by Bacillus velezensis YB-145[J]. Journal of Henan Agricultural Sciences, 2021, 50(10): 76-83. [39] Kim Y S, Lee Y, Cheon W, et al.Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides[J]. Scientific Reports, 2021, 11(1): 626. doi: 10.1038/s41598-020-80231-2. [40] Jiang C H, Liao M J, Wang H K, et al.Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinereal[J]. Biological Control, 2018, 126: 147-157. [41] Guo J K, Lv X, Jia H L, et al.Effects of EDTA and plant growth promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance[J]. Journal of Environmental Sciences, 2020, 88: 361-369. [42] Abid U, Sun H, Muhammad F H, et al.Phytoremediation of heavy metal assisted by plant growth promoting (PGP) bacteria[J]. Environmental and Experimental Botany, 2015, 117: 28-40. [43] 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015, 24(7): 1228-1234. Guo J K, Dong M F, Ding Y Z, et al.Effects of plant growth promoting rhizobacteria on plants heavy metal uptake and transport: a review[J]. Ecology and Environmental Sciences, 2015, 24(7): 1228-1234. [44] Zhang X F, Hu Z H, Yan T, et al.Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays[J]. Ecotoxicology and Environmental Safty, 2019, 171: 352-360. [45] Georges B, Bernard D.Cell wall degrading enzymes, inhibitor proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens[J]. Plant Physiology and Biochemistry, 2000, 38(1/2): 157-163. [46] Klarzynski O, Plesse B, Joubert J M, et al.Linear β-1,3 glucans are elicitors of defense responses in tobacco[J]. Plant Physiology, 2000, 124(3): 1027-1037. [47] Lim S M, Yoon M Y, Choi G J, et al.Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi[J]. The Plant Pathology Journal, 2017, 33(5): 488-498. [48] Chowdhury S P, Hartmann A, Gao X W, et al.Biocontrol mechanism by root associated Bacillus amyloliquefaciens FZB42: a review[J]. Frontiers in Microbiology, 2015, 6: 780. doi: 10.3389/fmicb.2015.00780. [49] Xu S, Liu Y X, Cernava T, et al.Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts[J]. Nature Microbiology, 2022, 7(6): 831-843. |