[1] 陆续, 江伟民, 唐克轩. 茉莉酸类物质在植物次生代谢调控方面的研究进展[J]. 上海交通大学学报(农业科学版), 2011, 29(6): 87-91. Lu X, Jiang W M, Tang K X.Research progress of jasmonates' regulation on the plant secondary metabolism[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(6): 87-91. [2] Wasternack C, Hause B.Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058. [3] Minato N, Himeno M, Hoshi A, et al.The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways[J]. Scientific Reports, 2014, 4: 7399. doi: 10.1038/srep07399. [4] 冉燕子. 苗期低温胁迫对烟草JA信号途径部分关键基因表达及JA含量的影响[D]. 重庆: 西南大学, 2017. Ran Y Z.Effects of low temperature stress on expression of part key gene in JA signaling pathway and JA content of tobacco at seeding stage [D]. Chongqing: Southwest University, 2017. [5] Zang Y X, Ge J L, Huang L H, et al.Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation[J]. Journal of Zhejiang University-Science B, 2015, 16(8): 696-708. [6] 王晨, 安立成, 李剑超, 等. 北柴胡MYC2转录因子的克隆及茉莉酸诱导的调控分析[J]. 植物生理学报, 2021, 57(2): 439-450. Wang C, An L C, Li J C, et al.Cloning of the MYC2 transcription factor from Bupleurum chinense and analysis of jasmonate-induced regulation[J]. Plant Physiology Journal, 2021, 57(2): 439-450. [7] 张懿. 机械损伤下麻疯树CURCIN2的诱导表达及对茉莉酸的响应[D]. 西安: 西北大学, 2021. Zhang Y, Induced expression of CURCIN2 under mechanical wounding and its response to jasmonate [D]. Xi'an: Northwestern University, 2021. [8] 于涌鲲, 郝玉兰, 万善霞, 等. 茉莉酸类物质的生物合成及其信号转导研究进展[J]. 自然科学进展, 2008, 18(9): 961-967. Yu Y K, Hao Y L, Wan S X, et al.Research progress on biosynthesis and signal transduction of jasmonic acid[J]. Progress in Natural Science, 2008, 18(9): 961-967. [9] 刘庆霞, 李梦莎, 国静. 茉莉酸生物合成的调控及其信号通路[J]. 植物生理学报, 2012, 48(9): 837-844. Liu Q X, Li M S, Guo J.Regulation of jasmonic acid biosynthesis and jasmonic acid signaling pathway[J]. Plant Physiology Journal, 2012, 48(9): 837-844. [10] Gfeller A, Baerenfaller K, Loscos J, et al.Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves[J]. Plant Physiology, 2011, 156(4): 1797-1807. [11] 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析[D]. 杨凌: 西北农林科技大学, 2021. Zhang C.Identification of jasmonic acid regulatory gene GH3 family and analysis of disease resistance and wounding in potato [D]. Yangling: Northwest Agricultural and Forestry University, 2021. [12] Dave A, Graham I A.Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA)[J]. Frontiers in Plant Science,2012, 3: 42. doi: 10.3389/fpls.2012.00042. [13] Pauwels L, Barbero G F, Geerinck J, et al.NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289): 788-791. [14] 吕嘉. CRISPR/Cas9编辑NtNINJA基因对低温胁迫下NtJAZ1的表达量的影响[D]. 重庆: 西南大学, 2018. Lü J.Effect of CRISPR/Cas9-edited NtNINJA gene on NtJAZl expression under low-temperature stress [D]. Chongqing: Southwest University, 2018. [15] Zhu J C, Chen F, Wang L Y, et al.Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490. [16] Zeng L T, Zhou X C, Su X G, et al.Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food Science & Technology, 2020, 106: 242-253. [17] 欧伊伶. 槠叶齐夏秋乌龙茶加工工艺及香味品质形成机理研究[D]. 长沙: 湖南农业大学, 2019. Ou Y L.Study on the processing technology and quality formation mechanism of zhuyeqi summer oolong tea [D]. Changsha: Hunan Agricultural University, 2019. [18] Zhu C, Zhang S T, Fu H F, et al.Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering[J]. Frontiers in Plant Science, 2019, 10: 1638. doi: 10.3389/fpls.2019.01638. [19] Zeng L T, Wang X W, Liao Y Y, et al.Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea ( Camellia sinensis)[J]. Postharvest Biology and Technology, 2019, 157: 110974. doi: 10.1016/j.postharvbio.2019.110974. [20] Li J L, Zeng L Y, Liao Y Y, et al.Influence of chloroplast defects on formation of jasmonic acid and characteristic aroma compounds in tea (Camellia sinensis) leaves exposed to postharvest stresses[J]. International Journal of Molecular Sciences, 2019, 20(5): 1044. doi: 10.3390/ijms20051044. [21] 林馨颖, 王鹏杰, 陈雪津, 等. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析[J]. 茶叶科学, 2021, 41(4): 482-496. Lin X Y, Wang P J, Chen X J, et al.Identification of LOX gene family in Camellia sinensis and expression analysis in the process of white tea withering[J]. Journal of Tea Science, 2021, 41(4): 482-496. [22] 胡清财, 郑玉成, 杨云, 等. 茶树COI1基因家族的鉴定及其在乌龙茶加工中的表达[J]. 应用与环境生物学报, 2022, 28(6): 1496-1502. Hu Q C, Zheng Y C, Yang Y, et al.Identification and expression of COI1 gene family in Camellia sinensis and its expression in oolong tea processing[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(6): 1496-1502. [23] 舒心, 高彦祥. 茶叶挥发性成分提取及其香气特征分析研究进展[J]. 食品工业科技, 2022, 43(15): 469-480. Shu X, Gao Y X.Research progress on extraction of volatile compounds and analysis of aroma characteristics in tea[J]. Science and Technology of Food Industry, 2022, 43(15): 469-480. [24] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349. Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349. [25] 苗爱清, 吕海鹏, 孙世利, 等. 乌龙茶香气的HS-SPME-GC-MS/GC-O研究[J]. 茶叶科学, 2010, 30(s1): 583-587. Miao A Q, Lyu H P, Sun S L, et al.Aroma components of oolong tea by HS-SPME-GC-MS and GC-O[J]. Journal of Tea Science, 2010, 30(s1): 583-587. [26] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [27] Liu L, Chen H R, Zhu J Y, et al.miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant (Camellia sinensis)[J]. Tree Physiology, 2022, 42: 1450-1462. [28] Zhou C Z, Zhu C, Tian C Y, et al.Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering[J]. Postharvest Biology and Technology, 2022, 183: 111726. doi: 10.1016/j.postharvbio.2021.111726. [29] Xu K, Tian C Y, Zhou C Z, et al.Non-targeted metabolomics analysis revealed the characteristic non-volatile and volatile metabolites in the Rougui wuyi rock tea (Camellia sinensis) from different culturing regions[J]. Foods, 2022, 11(12): 1694. doi: 10.3390/foods11121694. [30] Yang X G.Aroma constituents and alkylamides of red and green huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(5): 1689-1696. [31] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented congou black tea manufactured from Camellia nanchuanica by sensory omics techniques[J]. Journal of Tea Science, 2022, 42(3): 397-408. [32] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395. Chen L, Chen J, Chen Q B, et al.Effects of green-making technique on aroma pattern of oolong tea[J]. Journal of Tea Science, 2014, 34(4): 387-395. [33] 黄福平, 陈荣冰, 梁月荣, 等. 乌龙茶做青过程中香气组成的动态变化及其与品质的关系[J]. 茶叶科学, 2003, 23(1): 31-37. Huang F P, Chen R B, Liang Y R, et al.Changes of aroma constituents during zuoqing procedure and its relation to oolong tea quality[J]. Journal of Tea Science, 2003, 23(1): 31-37. [34] Zeng L T, Zhou Y, Gui J D, et al.Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019. [35] Shi J, Xie D C, Qi D D, et al.Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea[J]. Frontiers in Plant Science, 2019, 10: 781. doi: 10.3389/fpls.2019.00781. [36] Feng Z H, Li Y F, Li M, et al.Tea aroma formation from six model manufacturing processes[J]. Food Chemistry, 2019, 285: 347-354. [37] 张韵, 李蕙蕙, 周圣弘. 基于OAV对3种高香种工夫红茶的香气特征分析[J]. 食品研究与开发, 2020, 41(21): 184-191. Zhang Y, Li H H, Zhou S H.Analysis of fragrance characteristics in three congou black teas of highly fragrant species using odor active values[J]. Food Research and Development, 2020, 41(21): 184-191. [38] 张铭铭, 尹洪旭, 邓余良, 等. 基于HS-SPME/GC×GC- TOFMS/OAV不同栗香特征绿茶关键香气组分分析[J]. 食品科学, 2020, 41(2): 244-252. Zhang M M, Yin H X, Deng Y L, et al. Analysis of key odorants responsible for different chestnut-like aromas of green teas based on headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry and odor [J]. Food Science, 2020, 41(2): 244-252. [39] Van Gemert L J. Compilations of flavour threshold values in water and other media[M]. Utrecht: Oliemans Punter & Partners BV, 2018. [40] Robin J, Ashu G.Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea[J]. Food Chemistry, 2015, 167: 290-298. [41] 毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413-419. Mao J H, Xiong X H, Lu Y C.Advances in the regulation of plant stress response by jasmonic acid[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(4): 413-419. [42] Ruan J J, Zhou Y X, Zhou M L, et al.Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. doi: 10.3390/ijms20102479. [43] Deepika, Singh A.Expression dynamics indicate the role of jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K+) deficiency tolerance in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2021, 40(8): 1495-1512. [44] 陈寿松. 乌龙茶光萎凋过程香气代谢的分子机制及品质调控研究[D]. 福州: 福建农林大学, 2017. Chen S S.Study on molecular mechanism of volatiles metabolism and quality regulation during light withering process in oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [45] 马洪磊. 植物辅抑制因子TPL/TPR蛋白结构与EAR基序相互作用分子机理研究[D]. 上海: 中国科学院上海药物研究所, 2016. Ma H L.Structure of plant co-repressor TPL/TPR protein provides insights into mechanism of EAR motif binding [D]. Shanghai: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 2016. [46] Causier B, Ashworth M, Guo W, et al.The TOPLESS interactome: a framework for gene repression in Arabidopsis[J]. Plant Physiology, 2012, 158(1): 423-438. [47] An C P, Deng L, Zhai H W, et al.Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis[J]. Molecular Plant, 2022, 15(8): 1329-1346. [48] Zhang C P, Lei Y T, Lu C K, et al.MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1159-1175. [49] Ogawa S, Kawahara M R, Miyamoto K, et al.OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice[J]. Biochemical and Biophysical Research Communications, 2017, 486(3): 796-803. [50] 郑玉成, 谷梦雅, 毕婉君, 等. 茶树MYC转录因子家族的全基因组鉴定及表达分析[J]. 福建农业学报, 2021, 36(9): 1007-1016. Zheng Y C, Gu M Y, Bi W J, et al.Genome-wide analysis and expression pattern of MYC family in Camellia sinensis[J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1007-1016. [51] Zhao M Y, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. The New Phytologist, 2020, 226(2): 362-372. [52] Zhang X, Zhang Y, Wang Y H, et al.Transcriptome analysis of Cinnamomum chago: a revelation of candidate genes for abiotic stress response and terpenoid and fatty acid biosyntheses[J]. Frontiers in Genetics, 2018, 9: 505. doi: 10.3389/fgene.2018.00505. [53] 姚尹伊, 何梦玲, 李莹莹, 等. 广藿香萜类化合物生物合成及代谢调控研究进展[J]. 中国中药杂志, 2021, 46(21): 5560-5567. Yao Y Y, He M L, Li Y Y, et al.Biosynthesis and metabolism regulation of terpenoids in Pogostemon cablin: a review[J]. China Journal of Chinese Materia Medica, 2021, 46(21): 5560-5567. [54] Hong G J, Xue X Y, Mao Y B, et al.Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. The Plant Cell, 2012, 24(6): 2635-2648. [1] 朱晨, 张舒婷, 周承哲, 等. 萎凋处理对乌龙茶风味品质形成的转录组分析[J]. 生物工程学报, 2022, 38(1): 303-327. Zhu C, Zhang S T, Zhou C Z, et al.Transcriptome analysis reveals the role of withering treatment in flavor formation of oolong tea (Camellia sinensis)[J]. Chinese Journal of Biotechnology, 2022, 38(1): 303-327. |