茶叶科学 ›› 2023, Vol. 43 ›› Issue (1): 91-108.doi: 10.13305/j.cnki.jts.2023.01.007
卢丽1,2, 詹冬梅1,2, 周承哲1,2,3, 朱晨1,2,3, 谢思艺1,2, 徐凯1,2, 田采云1,2, 赖钟雄1,3, 郭玉琼1,2,*
收稿日期:
2022-09-19
修回日期:
2022-12-06
出版日期:
2023-02-15
发布日期:
2023-03-01
通讯作者:
* guoyq828@163.com
作者简介:
卢丽,女,硕士研究生,主要从事茶树栽培育种与生物技术研究。
基金资助:
LU Li1,2, ZHAN Dongmei1,2, ZHOU Chengzhe1,2,3, ZHU Chen1,2,3, XIE Siyi1,2, XU Kai1,2, TIAN Caiyun1,2, LAI Zhongxiong1,3, GUO Yuqiong1,2,*
Received:
2022-09-19
Revised:
2022-12-06
Online:
2023-02-15
Published:
2023-03-01
摘要: 对茶树茉莉酸合成与信号转导途径关键基因进行分析,并探究其在乌龙茶加工过程中的表达模式和对萜类物质形成的影响。结果表明,茶树茉莉酸合成与信号转导途径中共11个关键基因家族,包含133个候选基因;顺式作用元件分析显示,该途径关键基因的启动子区域包含大量的顺式作用元件,包括茉莉酸响应、损伤响应和厌氧诱导响应等元件;qRT-PCR分析表明,该途径大多数基因在萎凋过程呈上升趋势,在二摇后达到最高,四摇过程显著下调,杀青前略有回升,且关键基因可响应乌龙茶加工过程中多种胁迫;顶空固相微萃取-气相色谱质谱联用(HS-SPME-GC-MS)检测出73种萜类物质,主要包括芳樟醇、香叶醇和α-法尼烯等呈花果香型物质;相关性分析表明,CsLOX11、CsLOX12、CsAOS2、CsAOC1、CsACX4、CsACX8、CsMYC2-4、CsMYC2_15和CsMYC2_21与β-蒎烯、柠檬烯和月桂烯等呈正相关,CsOPR2、CsTPL6和CsLUG4与反式-橙花叔醇、α-法尼烯和紫罗兰酮等呈正相关,其中CsTPL6与35种萜类化合物呈极显著正相关。明确茶树茉莉酸合成与信号转导途径关键基因参与调控乌龙茶加工过程中萜类化合物的形成,为探明乌龙茶加工过程香气形成的分子机制奠定基础。
中图分类号:
卢丽, 詹冬梅, 周承哲, 朱晨, 谢思艺, 徐凯, 田采云, 赖钟雄, 郭玉琼. 茶树茉莉酸合成与转导途径关键基因在乌龙茶加工过程中对萜类物质的影响[J]. 茶叶科学, 2023, 43(1): 91-108. doi: 10.13305/j.cnki.jts.2023.01.007.
LU Li, ZHAN Dongmei, ZHOU Chengzhe, ZHU Chen, XIE Siyi, XU Kai, TIAN Caiyun, LAI Zhongxiong, GUO Yuqiong. Effects of Key Genes of Jasmonic Acid Synthesis and Transduction Pathway in Tea Plant on Terpenoids during Oolong Tea Processing[J]. Journal of Tea Science, 2023, 43(1): 91-108. doi: 10.13305/j.cnki.jts.2023.01.007.
[1] 陆续, 江伟民, 唐克轩. 茉莉酸类物质在植物次生代谢调控方面的研究进展[J]. 上海交通大学学报(农业科学版), 2011, 29(6): 87-91. Lu X, Jiang W M, Tang K X.Research progress of jasmonates' regulation on the plant secondary metabolism[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(6): 87-91. [2] Wasternack C, Hause B.Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in [3] Minato N, Himeno M, Hoshi A, et al.The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways[J]. Scientific Reports, 2014, 4: 7399. doi: 10.1038/srep07399. [4] 冉燕子. 苗期低温胁迫对烟草JA信号途径部分关键基因表达及JA含量的影响[D]. 重庆: 西南大学, 2017. Ran Y Z.Effects of low temperature stress on expression of part key gene in JA signaling pathway and JA content of tobacco at seeding stage [D]. Chongqing: Southwest University, 2017. [5] Zang Y X, Ge J L, Huang L H, et al.Leaf and root glucosinolate profiles of Chinese cabbage ( [6] 王晨, 安立成, 李剑超, 等. 北柴胡MYC2转录因子的克隆及茉莉酸诱导的调控分析[J]. 植物生理学报, 2021, 57(2): 439-450. Wang C, An L C, Li J C, et al.Cloning of the MYC2 transcription factor from [7] 张懿. 机械损伤下麻疯树CURCIN2的诱导表达及对茉莉酸的响应[D]. 西安: 西北大学, 2021. Zhang Y, Induced expression of CURCIN2 under mechanical wounding and its response to jasmonate [D]. Xi'an: Northwestern University, 2021. [8] 于涌鲲, 郝玉兰, 万善霞, 等. 茉莉酸类物质的生物合成及其信号转导研究进展[J]. 自然科学进展, 2008, 18(9): 961-967. Yu Y K, Hao Y L, Wan S X, et al.Research progress on biosynthesis and signal transduction of jasmonic acid[J]. Progress in Natural Science, 2008, 18(9): 961-967. [9] 刘庆霞, 李梦莎, 国静. 茉莉酸生物合成的调控及其信号通路[J]. 植物生理学报, 2012, 48(9): 837-844. Liu Q X, Li M S, Guo J.Regulation of jasmonic acid biosynthesis and jasmonic acid signaling pathway[J]. Plant Physiology Journal, 2012, 48(9): 837-844. [10] Gfeller A, Baerenfaller K, Loscos J, et al.Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves[J]. Plant Physiology, 2011, 156(4): 1797-1807. [11] 张超. 茉莉酸调控基因GH3家族的鉴定及在马铃薯中抗病及损伤分析[D]. 杨凌: 西北农林科技大学, 2021. Zhang C.Identification of jasmonic acid regulatory gene GH3 family and analysis of disease resistance and wounding in potato [D]. Yangling: Northwest Agricultural and Forestry University, 2021. [12] Dave A, Graham I A.Oxylipin signaling: a distinct role for the jasmonic acid precursor [13] Pauwels L, Barbero G F, Geerinck J, et al.NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289): 788-791. [14] 吕嘉. CRISPR/Cas9编辑 Lü J.Effect of CRISPR/Cas9-edited [15] Zhu J C, Chen F, Wang L Y, et al.Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490. [16] Zeng L T, Zhou X C, Su X G, et al.Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food Science & Technology, 2020, 106: 242-253. [17] 欧伊伶. 槠叶齐夏秋乌龙茶加工工艺及香味品质形成机理研究[D]. 长沙: 湖南农业大学, 2019. Ou Y L.Study on the processing technology and quality formation mechanism of zhuyeqi summer oolong tea [D]. Changsha: Hunan Agricultural University, 2019. [18] Zhu C, Zhang S T, Fu H F, et al.Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea ( [19] Zeng L T, Wang X W, Liao Y Y, et al.Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea ( [20] Li J L, Zeng L Y, Liao Y Y, et al.Influence of chloroplast defects on formation of jasmonic acid and characteristic aroma compounds in tea ( [21] 林馨颖, 王鹏杰, 陈雪津, 等. 茶树LOX基因家族的鉴定及其在白茶萎凋过程的表达分析[J]. 茶叶科学, 2021, 41(4): 482-496. Lin X Y, Wang P J, Chen X J, et al.Identification of LOX gene family in [22] 胡清财, 郑玉成, 杨云, 等. 茶树COI1基因家族的鉴定及其在乌龙茶加工中的表达[J]. 应用与环境生物学报, 2022, 28(6): 1496-1502. Hu Q C, Zheng Y C, Yang Y, et al.Identification and expression of COI1 gene family in [23] 舒心, 高彦祥. 茶叶挥发性成分提取及其香气特征分析研究进展[J]. 食品工业科技, 2022, 43(15): 469-480. Shu X, Gao Y X.Research progress on extraction of volatile compounds and analysis of aroma characteristics in tea[J]. Science and Technology of Food Industry, 2022, 43(15): 469-480. [24] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学, 2019, 40(23): 341-349. Wang M Q, Zhu Y, Zhang Y, et al.A review of recent research on key aroma compounds in tea[J]. Food Science, 2019, 40(23): 341-349. [25] 苗爱清, 吕海鹏, 孙世利, 等. 乌龙茶香气的HS-SPME-GC-MS/GC-O研究[J]. 茶叶科学, 2010, 30(s1): 583-587. Miao A Q, Lyu H P, Sun S L, et al.Aroma components of oolong tea by HS-SPME-GC-MS and GC-O[J]. Journal of Tea Science, 2010, 30(s1): 583-587. [26] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-43-1-91/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. [27] Liu L, Chen H R, Zhu J Y, et al.miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant ( [28] Zhou C Z, Zhu C, Tian C Y, et al.Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine ( [29] Xu K, Tian C Y, Zhou C Z, et al.Non-targeted metabolomics analysis revealed the characteristic non-volatile and volatile metabolites in the [30] Yang X G.Aroma constituents and alkylamides of red and green huajiao ( [31] 欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学, 2022, 42(3): 397-408. Ouyang K, Zhang C, Liao X L, et al.Characterization of the key aroma in corn-scented congou black tea manufactured from [32] 陈林, 陈键, 陈泉宾, 等. 做青工艺对乌龙茶香气组成化学模式的影响[J]. 茶叶科学, 2014, 34(4): 387-395. Chen L, Chen J, Chen Q B, et al.Effects of green-making technique on aroma pattern of oolong tea[J]. Journal of Tea Science, 2014, 34(4): 387-395. [33] 黄福平, 陈荣冰, 梁月荣, 等. 乌龙茶做青过程中香气组成的动态变化及其与品质的关系[J]. 茶叶科学, 2003, 23(1): 31-37. Huang F P, Chen R B, Liang Y R, et al.Changes of aroma constituents during zuoqing procedure and its relation to oolong tea quality[J]. Journal of Tea Science, 2003, 23(1): 31-37. [34] Zeng L T, Zhou Y, Gui J D, et al.Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5011-5019. [35] Shi J, Xie D C, Qi D D, et al.Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea[J]. Frontiers in Plant Science, 2019, 10: 781. doi: 10.3389/fpls.2019.00781. [36] Feng Z H, Li Y F, Li M, et al.Tea aroma formation from six model manufacturing processes[J]. Food Chemistry, 2019, 285: 347-354. [37] 张韵, 李蕙蕙, 周圣弘. 基于OAV对3种高香种工夫红茶的香气特征分析[J]. 食品研究与开发, 2020, 41(21): 184-191. Zhang Y, Li H H, Zhou S H.Analysis of fragrance characteristics in three congou black teas of highly fragrant species using odor active values[J]. Food Research and Development, 2020, 41(21): 184-191. [38] 张铭铭, 尹洪旭, 邓余良, 等. 基于HS-SPME/GC×GC- TOFMS/OAV不同栗香特征绿茶关键香气组分分析[J]. 食品科学, 2020, 41(2): 244-252. Zhang M M, Yin H X, Deng Y L, et al. Analysis of key odorants responsible for different chestnut-like aromas of green teas based on headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry and odor [J]. Food Science, 2020, 41(2): 244-252. [39] Van Gemert L J. Compilations of flavour threshold values in water and other media[M]. Utrecht: Oliemans Punter & Partners BV, 2018. [40] Robin J, Ashu G.Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea[J]. Food Chemistry, 2015, 167: 290-298. [41] 毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413-419. Mao J H, Xiong X H, Lu Y C.Advances in the regulation of plant stress response by jasmonic acid[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(4): 413-419. [42] Ruan J J, Zhou Y X, Zhou M L, et al.Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. doi: 10.3390/ijms20102479. [43] Deepika, Singh A.Expression dynamics indicate the role of jasmonic acid biosynthesis pathway in regulating macronutrient (N, P and K+) deficiency tolerance in rice ( [44] 陈寿松. 乌龙茶光萎凋过程香气代谢的分子机制及品质调控研究[D]. 福州: 福建农林大学, 2017. Chen S S.Study on molecular mechanism of volatiles metabolism and quality regulation during light withering process in oolong tea [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [45] 马洪磊. 植物辅抑制因子TPL/TPR蛋白结构与EAR基序相互作用分子机理研究[D]. 上海: 中国科学院上海药物研究所, 2016. Ma H L.Structure of plant co-repressor TPL/TPR protein provides insights into mechanism of EAR motif binding [D]. Shanghai: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 2016. [46] Causier B, Ashworth M, Guo W, et al.The TOPLESS interactome: a framework for gene repression in Arabidopsis[J]. Plant Physiology, 2012, 158(1): 423-438. [47] An C P, Deng L, Zhai H W, et al.Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis[J]. Molecular Plant, 2022, 15(8): 1329-1346. [48] Zhang C P, Lei Y T, Lu C K, et al.MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1159-1175. [49] Ogawa S, Kawahara M R, Miyamoto K, et al.OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice[J]. Biochemical and Biophysical Research Communications, 2017, 486(3): 796-803. [50] 郑玉成, 谷梦雅, 毕婉君, 等. 茶树MYC转录因子家族的全基因组鉴定及表达分析[J]. 福建农业学报, 2021, 36(9): 1007-1016. Zheng Y C, Gu M Y, Bi W J, et al.Genome-wide analysis and expression pattern of MYC family in [51] Zhao M Y, Zhang N, Gao T, et al.Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. The New Phytologist, 2020, 226(2): 362-372. [52] Zhang X, Zhang Y, Wang Y H, et al.Transcriptome analysis of [53] 姚尹伊, 何梦玲, 李莹莹, 等. 广藿香萜类化合物生物合成及代谢调控研究进展[J]. 中国中药杂志, 2021, 46(21): 5560-5567. Yao Y Y, He M L, Li Y Y, et al.Biosynthesis and metabolism regulation of terpenoids in [54] Hong G J, Xue X Y, Mao Y B, et al. [1] 朱晨, 张舒婷, 周承哲, 等. 萎凋处理对乌龙茶风味品质形成的转录组分析[J]. 生物工程学报, 2022, 38(1): 303-327. Zhu C, Zhang S T, Zhou C Z, et al.Transcriptome analysis reveals the role of withering treatment in flavor formation of oolong tea ( |
[1] | 刘浩然, 张晨禹, 龚洋, 叶圆圆, 陈杰丹, 陈亮, 刘丁丁, 马春雷. 基于全基因组重测序的白化茶树mSNP标记开发及验证[J]. 茶叶科学, 2023, 43(1): 27-39. |
[2] | 闫佳伟, 陈宗懋, 李兆群, 罗宗秀, 边磊, 蔡晓明, 金珊. 小贯小绿叶蝉水状唾液蛋白的鉴定及其参与茶树“叶蝉烧”症状形成的初步研究[J]. 茶叶科学, 2023, 43(1): 40-54. |
[3] | 程开鑫, 杨凯欣, 邓雅元, 黎欣, 刘恩贝, 王玉春, 吕务云. 山茶炭疽菌对茶树的致病性及其对杀菌剂的敏感性研究[J]. 茶叶科学, 2023, 43(1): 55-66. |
[4] | 邓晓旭, 谢夏, 潘娅梅, 赵丰华, 蒋双丰, 徐文, 张洁, 孙润红, 夏明聪, 杨丽荣. 茶树腐皮镰刀菌拮抗菌株的筛选鉴定及促生防病特性分析[J]. 茶叶科学, 2023, 43(1): 67-77. |
[5] | 陈一凡, 阚新意, 蒋晓岚, 高丽萍, 夏涛. 茶树单宁酶CsTA的理化性质及其在绿茶饮料中的应用[J]. 茶叶科学, 2023, 43(1): 124-134. |
[6] | 盖淑杰, 王奕雄, 李兰, 刘硕谦, 李银花, 程孝, 夏茂, 刘仲华, 周智. 茶树生长光调控研究进展[J]. 茶叶科学, 2022, 42(6): 753-767. |
[7] | 汤榕津, 刘浩然, 刘丁丁, 张晨禹, 龚洋, 叶圆圆, 陈杰丹, 陈亮, 马春雷. 茶树白化果皮超微结构观察及分子机制研究[J]. 茶叶科学, 2022, 42(6): 779-790. |
[8] | 陈薛, 左欣欣, 徐安安, 徐平, 王岳飞. 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学, 2022, 42(6): 806-818. |
[9] | 周贝妮, 梅慧玲, 李建杰, 陈伶俐, 衷青, 李小倩, 陈暄, 黎星辉. 磷铝互作对茶树根系生长及有机酸分泌的影响[J]. 茶叶科学, 2022, 42(6): 819-827. |
[10] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[11] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[12] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[13] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[14] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[15] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|