[1] |
王雪儿, 王玲, 杨欣宇, 等. 不同化学形态硒的毒理学研究[J]. 湖北民族学院学报(自然科学版), 2022, 40(2): 150-156.
|
|
Wang X E, Wang L, Yang X Y, et al.Toxicological studies on different chemical forms of selenium[J]. Journal of Hubei Minzu University (Natural Science Edition), 2022, 40(2): 150-156.
|
[2] |
Guignardi Z, Schiavon M.Biochemistry of plant selenium uptake and metabolism[M]//Pilon-Smits E A H, Winkel L H E, Lin Z Q. Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Cham: Springer, 2017: 21-34.
|
[3] |
Dinh Q T, Cui Z W, Huang J, et al.Selenium distribution in the Chinese environment and its relationship with human health: a review[J]. Environment International,2018, 112: 294-309.
|
[4] |
高柱, 蔡荟梅, 彭传燚, 等. 富硒茶叶中硒的赋存形态研究[J]. 中国食物与营养,2014, 20(1): 31-33.
|
|
Gao Z, Cai H M, Peng C Y, et al.Distribution rule and combined forms of selenium in selenium-enriched tea[J]. Food and Nutrition in China, 2014, 20(1): 31-33.
|
[5] |
Zhang H J, Hao X Y, Zhang J J, et al.Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium[J]. Protoplasma,2022, 259: 127-140.
|
[6] |
张晶晶, 钱文俊, 郝心愿, 等. 茶树硫酸盐转运蛋白基因CsSULTR3.1的克隆及其对硫和硒的响应分析[J]. 园艺学报,2018, 45(2): 321-332.
|
|
Zhang J J, Qian W J, Hao X Y, et al.Cloning and expression analysis ofCsSULTR3.1implicated in sulfate and selenate treatments in tea plant(Camellia sinensis)[J]. Acta Horticulturae Sinica, 2018, 45(2): 321-332.
|
[7] |
Shrift A, Ulrich J M.Transport of selenate and selenite into astragalus roots[J]. 1969, 44: 893-896.
|
[8] |
Broyer T C, Johnson C M, Huston R P.Selenium and nutrition of astragalus. II. ionic sorption interactions among selenium, phosphate, and macronutrient and micronutrient cations[J]. Plant and Soil, 1972, 36: 651-669.
|
[9] |
Zhang L H, Hu B, Li W, et al.OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice[J]. New Phytologist, 2014, 201(4): 1183-1191.
|
[10] |
Song Z, Shao H, Huang H, et al.Overexpression of the phosphate transporter geneOsPT8improves the Pi and selenium contents inNicotiana tabacum[J]. Environmental and Experimental Botany, 2017, 137: 158-165.
|
[11] |
Chang M X, Gu M, Xia Y W, et al.OsPHT1;3mediates uptake, translocation and remobilization of phosphate under extremely low phosphate regimes[J]. Plant physiology, 2019, 179(2): 656-670.
|
[12] |
Ren H Z, Li X M, Guo L N, et al.Integrative transcriptome and proteome analysis reveals the absorption and metabolism of selenium in tea plants [Camellia sinensis(L.) O. Kuntze][J]. Frontiers in Plant Science, 2022, 13: 848349. doi: 10.3389/fpls.2022.848349.
|
[13] |
Cao D, Liu Y, Ma L, et al.Genome-wide identification and characterization of phosphate transporter gene family members in tea plants [Camellia sinensis(L.) O. Kuntze] under different selenite levels[J]. Plant Physiology and Biochemistry, 2021, 166: 668-676.
|
[14] |
辛华洪. 茶树磷转运蛋白基因CsPT4、CsPT1克隆和表达及CsPT4功能分析[D]. 南京: 南京农业大学, 2017.
|
|
Xin H H.Molecular cloning and expression analysis ofCsPT4andCsPT1gene from tea plant (Camellia Sinensis), subcellular localization and function analysis ofCsPT4[D]. Nanjing: Nanjing Agricultural University, 2017.
|
[15] |
郭丽娜, 王璐, 郝心愿, 等. 茶树根系吸收硒的生理特性研究[J]. 园艺学报, 2022, 49(9): 1967-1976.
|
|
Guo L N, Wang L, Hao X Y, et al.Physiological characteristics of selenium uptake in tea plant root[J]. Acta Horticulturae Sinica, 2022, 49(9): 1967-1976.
|
[16] |
Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8.
|
[17] |
Yoo S D, Cho Y H, Sheen J.Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565-1572.
|
[18] |
Hao X Y, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant [Camellia Sinensis(L.) O. Kuntze][J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
|
[19] |
Paszkowski U, Kroken S, Roux C, et al.Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. PNAS, 2002, 99(20): 13324-13329.
|
[20] |
Lian X M.Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice[J]. Molecular Plant, 2011, 4(6): 1105-1122.
|
[21] |
Zhou Q, Zhang S S, Chen F, et al.Genome-wide identification and characterization of the sbp-box gene family in petunia[J]. BioMed Central, 2018, 19(1): 193. doi: 10.1186/s12864-018-4537-9.
|
[22] |
张豪杰, 郝心愿, 周超, 等. 富硒区茶树鲜叶中硒累积与土壤因子的相关性分析[J]. 茶叶科学, 2020, 40(4): 465-477.
|
|
Zhang H J, Hao X Y, Zhou C, et al.Correlation analysis between selenium accumulation in tea leaves and soil factors in selenium-rich areas[J]. Journal of Tea Science, 2020, 40(4): 465-477.
|
[23] |
Wang M K, Yang W X, Zhou F, et al.Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicumL.)[J]. Environmental Science and Pollution Research, 2019, 26(20): 20475-20484.
|
[24] |
Milne J.Haloselenate (IV) formation and selenous acid dissociation equilibria in hydrochloric and hydrofluoric acids[J]. Canadian Journal of Chemistry, 1987, 18(35): 8735. doi: 10.1002/chin.198735010.
|
[25] |
Cabannes E, Buchner P, Broadley M R, et al.A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in astragalus species[J]. Plant Physiology, 2011, 157: 2227-2239.
|
[26] |
Freeman J L, Tamaoki M, Stushnoff C, et al.Molecular mechanisms of selenium tolerance and hyperaccumulation inStanleya pinnata[J]. Plant Physiology, 2010, 153(4): 1630-1652.
|