茶叶科学 ›› 2023, Vol. 43 ›› Issue (2): 275-286.doi: 10.13305/j.cnki.jts.2023.02.011
张莹1,2, 邱桐1,2, 韩梓怡1, 安琪1,2, 赵潇奕1,2, 姜青1,2, 李露青1,2, 宁井铭1,2, 宛晓春1,2, 戴前颖1,2,*
收稿日期:
2022-10-26
修回日期:
2022-12-21
出版日期:
2023-04-15
发布日期:
2023-05-05
通讯作者:
*daiqianying@ahau.edu.cn
作者简介:
张莹,女,硕士研究生,主要从事茶叶审评与品质调控方面研究。
基金资助:
ZHANG Ying1,2, QIU Tong1,2, HAN Ziyi1, AN Qi1,2, ZHAO Xiaoyi1,2, JIANG Qing1,2, LI Luqing1,2, NING Jingming1,2, WAN Xiaochun1,2, DAI Qianying1,2,*
Received:
2022-10-26
Revised:
2022-12-21
Online:
2023-04-15
Published:
2023-05-05
摘要: 制定具有标准级差代表性的实物标准样对黄茶的生产流通具有重要意义。分别招募80名普通消费者和22名初级评价员,对皖西黄茶的3大类(黄芽茶、黄小茶、黄大茶)9个等级实物标准样进行排序检验及Napping-UFP法分析。结果表明,在排序检验法中仅依据外形可基本实现对8个标准样的判定(其中黄芽特级与一级不能判别);在Napping-UFP法中,22名初级评价员仅根据外形也能较好地区分不同等级的黄茶样品,根据香气或滋味可以准确区分黄芽茶、黄小茶和黄大茶,并能准确区分黄大茶的轻火样和足火样;同时初级评价员给出了较为丰富的描述词(外形33个,香气21个,滋味24个),外形描述词中的“绿”“黄”“多梗”,香气描述词中的“嫩香”“甜香”“烟丝”,滋味描述词中的“鲜”词频较高,可以用于皖西黄茶实物标准样的级差判别,有利于消费者的理解与接受,以及皖西黄茶的市场推广。
中图分类号:
张莹, 邱桐, 韩梓怡, 安琪, 赵潇奕, 姜青, 李露青, 宁井铭, 宛晓春, 戴前颖. 排序检验法和Napping-UFP法在皖西黄茶实物标准样研制中的应用[J]. 茶叶科学, 2023, 43(2): 275-286. doi: 10.13305/j.cnki.jts.2023.02.011.
ZHANG Ying, QIU Tong, HAN Ziyi, AN Qi, ZHAO Xiaoyi, JIANG Qing, LI Luqing, NING Jingming, WAN Xiaochun, DAI Qianying. Application of Ranking and Napping-UFP in the Development of Standard Yellow Tea Samples from Western Anhui Province[J]. Journal of Tea Science, 2023, 43(2): 275-286. doi: 10.13305/j.cnki.jts.2023.02.011.
[1] | 安徽农业大学茶树生物学与资源利用国家重点实验室. 皖西黄茶加工技术规程: DB34/T 2891—2017[S]. [出版地不详]: [出版者不详], 2017.State Key Laboratory of Tea Plant Biology and Utilization. Technical Specification for Yellow tea Processing in Western Anhui Province: DB34/T 2891—2017 [S]. [s.n.]: [s.n.], 2017. |
[2] | 卫聿铭, 宁井铭, 张梁, 等. 黄茶功能性成分与健康功效研究进展[J]. 中国茶叶, 2021, 43(10): 46-54.Wei Y M, Ning J M, Zhang L, et al.Research progress on functional components and health effects of yellow tea[J]. China Tea, 2021, 43(10): 46-54. |
[3] | Escudero-Gilete M L, Meléndez-Martínez A J, Heredia F J, et al. Optimization of olive-fruit paste production using a methodological proposal based on a sensory and objective color analysis[J]. Grasas Y Aceites, 2009, 60(4): 396-404. |
[4] | 吴吉玲, 黄一珍, 姜鹏飞, 等. 排序法在大西洋鲭鱼脱腥工艺筛选中的应用[J]. 食品研究与开发, 2020, 41(23): 73-79.Wu J L, Huang Y Z, Jiang P F, et al.Applicatian of ranking test in screening of atlantic mackerel (Scomber scombrus) deodorization process[J]. Food Research and Development, 2020, 41(23): 73-79. |
[5] | Marques C, Correia E, Dinis L, et al.An overview of sensory characterization techniques: from classical descriptive analysis to the emergence of novel profiling methods[J]. Foods, 2022, 11(3): 255. doi: 10.3390/foods11030255. |
[6] | Penelope O, Sara C, Edwin P, et al.Comparison of quantitative descriptive analysis to the napping methodology with and without product training[J]. Journal of Sensory Studies, 2018, 33(3): e12331. doi: 10.1111/joss.12331. |
[7] | Jing L, Wender L P B, Emma S, et al. Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile[J]. Food Research International, 2018, 106: 892-900. |
[8] | Lucía A, Leticia V, Luis D S, et al.Comparison of consumer-based methodologies for sensory characterization: case study with four sample sets of powdered drinks[J]. Food Quality and Preference, 2017, 56: 149-163. |
[9] | Pickup W, Bremer P, Peng M.Comparing conventional Descriptive Analysis and Napping(R)-UFP against physiochemical measurements: a case study using apples[J]. Journal of the Science of Food and Agriculture, 2018, 98(4): 1476-1484. |
[10] | 李元一, 邢可馨, 张葆春, 等. 基于全二维气相色谱-飞行时间质谱及感官分析的中法白兰地香气特征研究[J]. 食品与发酵工业, 2020, 46(14): 198-203.Li Y Y, Xing K X, Zhang B C, et al.Aroma characterization of Chinese and French brandy based on comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J]. Food and Fermentation Industries, 2020, 46(14): 198-203. |
[11] | Jing L, Marlene S G, Rossella D M, et al.Performance of Flash Profile and Napping with and without training for describing small sensory differences in a model wine[J]. Food Quality and Preference, 2016, 48: 41-49. |
[12] | Alanah B, Lydia H, Connor D R, et al.Use of different panellists (experienced, trained, consumers and experts) and the projective mapping task to evaluate white wine[J]. Food Quality and Preference, 2020, 83: 103900. doi: 10.1016/j.foodqual.2020.103900. |
[13] | Helene H, Hildegarde H.A summary of projective mapping observations: the effect of replicates and shape, and individual performance measurements[J]. Food Quality and Preference, 2013, 28(1): 168-181. |
[14] | 田欣, 张会宁, 祁新春, 等. 快速感官分析技术在葡萄酒香气感官分析中的应用[J]. 食品与发酵工业, 2019, 45(21): 215-220.Tian X, Zhang H N, Qi X C, et al.The application of rapid sensory profiling technique in wine aroma sensory analysis[J]. Food and Fermentation Industries, 2019, 45(21): 215-220. |
[15] | Young-Kyung K, Laureen J, Dominique V, et al.A cross-cultural study using Napping®: Do Korean and French consumers perceive various green tea products differently?[J]. Food Research International, 2013, 53(1): 534-542. |
[16] | Esmerino E A, Filho E R T, Carr B T, et al. Consumer-based product characterization using Pivot Profile, Projective Mapping and Check-all-that-apply (CATA): a comparative case with Greek yogurt samples[J]. Food Research International, 2017, 99: 375-384. |
[17] | Pineau N, Girardi A, Lacoste G C, et al.Comparison of RATA, CATA, sorting and Napping® as rapid alternatives to sensory profiling in a food industry environment[J]. Food Research International, 2022, 158: 111467. doi: 10.1016/j.foodres.2022.111467. |
[18] | Morales J, Tomas-Vidal A, Phoco E, et al.An approach to the Spanish consumer's perception of the sensory quality of environmentally friendly seabass[J]. Foods, 2021, 10(11): 2694. doi: 10.3390/foods10112694. |
[19] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶感官审评方法: GB/T 23776—2018[S]. 北京: 中国标准出版社, 2018.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methodology for sensory evaluation of tea: GB/T 23776—2018 [S]. Beijing: Standards Press of China, 2018. |
[20] | Christian D, Per B B, Wender L P B. Confidence ellipses: a variation based on parametric bootstrapping applicable on Multiple Factor Analysis results for rapid graphical evaluation[J]. Food Quality and Preference, 2012, 26(2): 278-280. |
[1] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. |
[2] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[3] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[4] | 尹明华, 张牧彤, 徐子林, 欧阳茜, 王美暄, 李文婷. 茶树‘大面白’线粒体基因组结构特征及其密码子偏好性分析[J]. 茶叶科学, 2025, 45(1): 61-78. |
[5] | 唐美君, 李红, 张欣欣, 姜洪新, 王志博, 郭华伟, 肖强. 温度对灰茶尺蠖幼虫龄期数量的影响[J]. 茶叶科学, 2025, 45(1): 79-86. |
[6] | 陈俊华, 闻鑫茹, 王晨旭, 张俏俏, 刘红敏, 宁万光, 郭世保. 叉角厉蝽对茶银尺蠖幼虫的捕食作用及捕食偏好性[J]. 茶叶科学, 2025, 45(1): 87-98. |
[7] | 李再霖, 彭锋, 王兴民, 陈晓胜. 潮州单丛茶区不同海拔瓢虫科昆虫群落结构与多样性[J]. 茶叶科学, 2025, 45(1): 99-109. |
[8] | 马雪晴, 吴华伟, 曹春霞, 郑娇莉. 茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响[J]. 茶叶科学, 2025, 45(1): 110-120. |
[9] | 林东艺, 黄冲, 王未名, 黄艳, 冯新凯. 茶渣基摩擦纳米发电机的性能优化及风力监测系统应用研究[J]. 茶叶科学, 2025, 45(1): 121-132. |
[10] | 马梦君, 胡新龙, 邱首哲, 张锐明, 唐慧珊, 刘晨, 余子铭, 李婧, 王明乐. 基于代谢组学的不同年份青砖茶主要品质成分分析[J]. 茶叶科学, 2025, 45(1): 133-144. |
[11] | 罗璐璐, 赵悦汐, 王彦博, 幸怡, 齐洋, 马宏炜, 程林峰, 张芳琳. 表没食子儿茶素没食子酸酯抗汉滩病毒效果研究[J]. 茶叶科学, 2025, 45(1): 145-156. |
[12] | 徐金屏, 杜雪梅, 吕婉仪, 朱雷, 张丹阳, 陈红平, 陈玲, 柴云峰. 绿茶中7种不同极性农药在茶汤中的浸出规律及其风险评估[J]. 茶叶科学, 2025, 45(1): 157-168. |
[13] | 杨浩, 唐佳暖, 杜舒琪, 张豆, 胡广. 基于社交媒体数据的西湖龙井茶园生态系统文化服务评价[J]. 茶叶科学, 2025, 45(1): 169-180. |
[14] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[15] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|