[1] Li L, Hu Y F, Wu L H, et al.The complete chloroplast genome sequence of Camellia sinensis cv. Dahongpao: a most famous variety of Wuyi tea (Synonym: Thea bohea L.)[J]. Mitochondrial DNA Part B Resources, 2021, 6(1): 3-5. [2] Fan L, Li L, Hu Y F, et al.Complete chloroplast genomes of five classical Wuyi tea varieties (Camellia sinensis, Synonym: Thea bohea L.), the most famous Oolong tea in China[J]. Mitochondrial DNA Part B Resources, 2022, 7(4): 655-657. [3] Xiao K B.The taste of tea: material, embodied knowledge and environmental history in northern Fujian, China[J]. Journal of Material Culture, 2017, 22(1): 3-18. [4] Chen S, Li M H, Zheng G Y, et al.Metabolite profiling of 14 Wuyi rock tea cultivars using UPLC-QTOF MS and UPLC-QqQ MS combined with chemometrics[J]. Molecules, 2018, 23(2): 104. doi:10.3390/molecules23020104. [5] 罗盛财, 陈德华, 黄贤格, 等. 武夷名丛单丛茶树种质资源收集、整理鉴定与保护利用研究[J]. 中国茶叶, 2017, 39(12): 18-20. Luo S C, Chen D H, Huang X G, et al.Research on the collection, collation, identification, protection and utilization of germplasm resources of Wuyi Mingcong single conglomerate tea plant[J]. China Tea, 2017, 39(12): 18-20. [6] 罗盛财. 武夷岩茶名丛录[M]. 福州: 福建科学技术出版社, 2013. Luo S C.Wuyi rock tea directory[M]. Fuhzou: Fujian Science and Technology Press, 2013. [7] Sharma N, Dubey A K, Srivastav M, et al.Assessment of genetic diversity in grapefruit (Citrus paradisi Macf) cultivars using physico-chemical parameters and microsatellite markers[J]. Australian Journal of Crop Science, 2015, 9(1): 62-68. [8] Raina S N, Ahuja P S, Sharma R, et al.Genetic structure and diversity of India hybrid tea[J]. Genetic Resources and Crop Evolution, 2012, 59(7): 1527-1541. [9] Jones H G, Norris C E, Smith D, et al.Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley[J]. Theoretical and Applied Genetics, 2013, 126(4): 901-911. [10] 庞新燕. 浅析建立实质性派生品种制度的法律价值和意义——以新修订《种子法》为研究文本[J]. 种子, 2022, 41(7): 144-148. Pang X Y.A brief analysis of the legal value and significance of establishing a substantial derivative system: take the newly revised “Seed Law” as the research text[J]. Seed, 2022, 41(7): 144-148. [11] 金惠淑, 梁月荣, 陆建良. 中、韩两国主要茶树品种基因组DNA多态性比较研究[J]. 茶叶科学, 2001, 21(2): 103-l07. Jin H S, Liang Y R, Lu J L.Comparative study on genomic DNA diversity between Korean and Chinese tea cultivars by RAPD technique[J]. Journal of Tea Science, 2001, 21(2): 103-107. [12] Karthigeyan S, Rajkumar S, Sharma R K, et al.High level of genetic diversity among the selected accessions of tea (Camellia sinensis) from abandoned tea gardens in western Himalaya[J]. Biochem Genet, 2008, 46(11/12): 810-819. [13] 段云裳, 姜燕华, 王丽鸳, 等. 中国红、绿茶适制品种(系)遗传多样性与亲缘关系的SSR分析[J]. 中国农业科学, 2011, 44(1): 99-109. Duan Y S, Jiang Y H, Wang L Y, et al.Analysis of genetic diversity and relationship of tea cultivars and lines suitable for making green and black tea using SSR markers[J]. Scientia Agricultura Sinica, 2011, 44(1): 99-109. [14] Amiteye S.Basic concepts and methodologies of DNA marker systems in plant molecular breeding[J]. Heliyon, 2021, 7(10): e08093. doi: 10.1016/j.heliyon.2021.e08093. [15] 陈志丹, 林志坤, 孙威江, 等. 125份武夷山茶树种质资源的遗传多样性分析及DNA指纹图谱的建立[J]. 分子植物育种, 2016, 14(12): 3601-3608. Chen Z D, Lin Z K, Sun W J, et al.Genetic diversity analysis and DNA fingerprinting construction of 125 tea germplasm resources from Wuyishan[J]. Molecular Plant Breeding, 2016, 14(12): 3601-3608. [16] 夏法刚, 衷兴旺, 吴锋, 等. 武夷岩茶种质资源遗传多样性与亲缘关系的SRAP分析[J]. 茶叶科学, 2017, 37(1): 78-85. Xia F G, Zhong X W, Wu F, et al.SRAP marker analysis of genetic diversity and relationship in Wuyi rock tea germplasm resources[J]. Journal of Tea Science, 2017, 37(1): 78-85. [17] 叶江华, 罗盛财, 王海斌, 等. 武夷山名丛单丛茶树种质资源的遗传多样性与亲缘关系分析[J]. 福建茶叶, 2017, 39(5): 11-13. Ye J H, Luo S C, Wang H B, et al.Analysis of genetic diversity and kinship of the germplasm resources of Mingcong and Dancong in Wuyi Mountain[J]. Tea in Fujian, 2017, 39(5): 11-13. [18] Tian H L, Wang F G, Zhao J R, et al.Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties[J]. Molecular Breeding, 2015, 35(6): 136. doi: 10.1007/s11032-015-0335-0. [19] Xu C, Ren Y H, Jian Y Q, et al.Development of a maize 55 K SNP array with improved genome coverage for molecular breeding[J]. Molecular Breeding, 2017, 37(3): 20. doi: 10.1007/s11032-017-0622-z. [20] Ellis D D, Chavez O, Coombs J J, et al.Genetic identity in genebanks: application of the SolCAP 12K SNP array in fingerprinting and diversity analysis in the global in trust potato collection[J]. Genome, 2018, 61(7): 523-537. [21] 徐云碧, 王冰冰, 张健, 等. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870. Xu Y B, Wang B B, Zhang J, et al.Enhancement of plant variety protection and regulation using molecular marker technology[J]. Acta Agronomica Sinica, 2022, 48(8): 1853-1870. [22] Lin Y, Yu W T, Zhou L, et al.Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers[J]. Tree Genetics & Genomes, 2019, 16: 3. doi: 10.1007/s11295-019-1392-z. [23] Liu C G, Yu W T, Cai C P, et al.Genetic diversity of tea plant (Camellia sinensis (L.) Kuntze) germplasm resources in Wuyi Mountain of China based on single nucleotide polymorphism (SNP) markers[J]. Horticulturae, 2022, 8(10): 932. doi: 10.3390/horticulturae8100932. [24] Favre F, Jourda C, Besse P, et al.Genotyping-by-sequencing technology in plant taxonomy and phylogeny[J]. Methods in Molecular Biology, 2021, 2222: 167-178. [25] Cao D, Wang D X, Li S M, et al.Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale[J]. Theoretical and Applied Genetics, 2021, 135: 1705-1715. [26] Wu X B, Blair M W.Diversity in grain amaranths and relatives distinguished by genotyping by sequencing (GBS)[J]. Frontiers in Plant Science, 2017, 8: 1960. doi: 10.3389/fpls.2017.01960. [27] Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J]. Genomics, 2013, arXiv: 1303.3997v2. doi: 10.48550/arXiv.1303.3997. [28] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [29] Danecek P, Auton A, Abecasis G, et al.The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156-2158. [30] Liu K J, Muse S V.PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129. [31] Alexander D H, Novembre J, Lange K L.Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664. [32] Purcell S, Neale B M, Todd-brown K E, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575. [33] Leyunic I, Bork P.Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees[J]. Nucleic Acids Research, 2016, 44(W1): W242-W245. [34] 《中国茶树品种志》编写委员会. 中国茶树品种志[M]. 上海: 科学技术出版社, 2001. Compilation Committee of “Zhong Guo Cha Shu Pin Zhong Zhi”. Zhong Guo Cha Shu Pin Zhong Zhi[M]. Shanghai: Science and Technology Press, 2001. [35] 杨亚军, 梁月荣. 中国无性系茶树品种志[M]. 上海: 科学技术出版社, 2014. Yang Y J, Liang Y R.Zhong Guo Wu Xing Xi Cha Shu Pin Zhong Zhi[M]. Shanghai: Science and Technology Press, 2014. [36] Pickrell J K, Pritchard J K.Inference of population splits and mixtures from genome-wide allele frequency data[J]. Plos Genetics, 2012, 8(11): 1002967. doi:10.1371/journal. pgen.1002967 [37] Rohlf F, James, Rohif J F. NTSYS-pc numerical taxonomy and multivariate analysis system[M]. New York: Biostatistics, 1992. [38] Reif J C, Melchinger A E, Frisch M. Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management[J]. Crop Science, 2005, 45(1): 1-7. https://doi.org/10.1111/pbr.12109 [39] ISF. Guidelines for the handling of a dispute on essential derivation of maize lines[R/OL]. International Seed Federa, Nyon, Switzerland, 2008. http://worldseed.org. [40] Liu W L, Qian Z W, Zhang J.et al.Impact of fruit shape selection on genetic structure and diversity uncovered from genome-wide perfect SNPs genotyping in eggplant[J]. Molecular Breeding, 2019, 39(11): 140. doi: 10.1007/s11032-019-1051-y. [41] Yang J J, Zhang J, Han R X, et al.Target SSR-Seq: a novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties[J]. Frontiers in Plant Science, 2019, 10: 531. doi: 10.3389/fpls.2019.00531. [42] Zhang W Y, Zhang Y J, Qiu H J, et al.Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties[J]. Nature Communications, 2020, 11(1): 3719. doi:10.1038/s41467-020-17498-6. [43] 郭元超. 茶叶植物的起源、传播与演化[J]. 茶叶科学技术, 1996(1): 1-7. Guo Y C.Origin, spread and evolution of tea plants[J]. Acta Tea Sinica, 1996(1): 1-7. [44] 周玉瑶. 福建茶叶的起源和发展[J]. 福建茶叶, 2013, 35(6): 52-53. Zhou Y Y.The origin and development of Fujian tea[J]. Tea in Fujian, 2013, 35(6): 52-53. [45] Zhang X T, Chen S, Shi L Q, et al.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis[J]. Nature Genetics, 2021, 53(8): 1250-1259. [46] 张天福. 福建乌龙茶[M]. 福州: 福建科学技术出版社, 1990. Zhang T F.Fujian oolong tea[M]. Fuzhou: Fujian Science and Technology Press, 1990. [47] 陈龙, 陈陶然. 闽茶说[M]. 福州: 福建人民出版社, 2006. Chen L, Chen T R.Min Cha Shuo[M]. Fuzhou: Fujian People's Publishing House, 2006. [48] 姜燕华, 张成才, 成浩. 茶树良种场不同品种的SSR鉴定研究[J]. 茶叶学报, 2016, 57(3): 105-112. Jiang Y H, Zhang C C, Cheng H.SSR cultivar identifications of premium tea[J]. Acta Tea Sinica, 2016, 57(3): 105-112. [49] 王松琳, 马春雷, 黄丹娟, 等. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学, 2018, 38(1): 58-68. Wang S L, Ma C L, Huang D J, et al.Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers[J]. Journal of Tea Science, 2018, 38(1): 58-68. [50] Noli E, Teriaca M S, Conti S.Criteria for the definition of similarity thresholds for identifying essentially derived varieties[J]. Plant Breeding, 2013, 132(6): 525-531. [51] 詹梓金. 武夷大红袍种源追溯与基因鉴定[J]. 福建茶叶, 2010, 32(8): 18-20. Zhan Z J.Wuyi Dahong Pao seed source traceability and genetic identification[J]. Tea in Fujian, 2010, 32(8): 18-20. [52] 林志坤, 孙威江, 陈志丹, 等. ISSR分子标记技术及其在茶树研究中的应用[J]. 广东农业科学, 2014, 41(9): 139-142, 146. Lin Z K, Sun W J, Chen Z D, et al.Research and application of ISSR molecular markers in Camellia sinensis[J]. Guangdong Agricultural Sciences, 2014, 41(9): 139-142, 146. [53] 王富强, 樊秀彩, 张颖, 等. SNP分子标记在作物品种鉴定中的应用和展望[J]. 植物遗传资源学报, 2020, 21(5): 1308-1320. Wang F Q, Fan X C, Zhang Y, et al.Application and prospect of SNP molecular markers in crop variety identification[J]. Journal of Plant Genetic Resources, 2020, 21(5): 1308-1320. [54] 张成才, 谭礼强, 王丽鸳, 等. SNaPshot技术检测茶树SNP研究[J]. 茶叶科学, 2014, 34(2): 180-187. Zhang C C, Tan L Q, Wang L Y, et al.Study of SNaPshot detect SNP markers in tea plant[J]. Journal of Tea Science, 2014, 34(2): 180-187. [55] 樊晓静, 于文涛, 蔡春平, 等. 利用SNP标记构建茶树品种资源分子身份证[J]. 中国农业科学, 2021, 54(8): 1751-1772. Fan X J, Yu W T, Cai C P, et al.SNP labeling was used to construct molecular identity cards for tea germplasm resources[J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1772. [56] 王泽涵, 于文涛, 樊晓静, 等. 利用SNP标记构建漳州南部茶树种质资源的分子身份证[J]. 江苏农业科学, 2022, 50(18): 284-289. Wang Z H, Yu W T, Fan X J, et al.SNP labeling was used to construct molecular identity cards for tea germplasm resources in southern Zhangzhou[J]. Jiangsu Agricultural Sciences, 2022, 50(18): 284-289. |